Department of Bioproducts and Biosystems

Biobased Colloids and Materials (BiCMat)

BiCMat group led by Prof. Orlando Rojas works toward supporting global sustainable development through research on the fundamental and utilization aspects of renewable resources, including lignocellulose, proteins and other biopolymers. Our research aims to discover competitive alternatives for fossil materials.
CHEM_Bio_Bicmat

The BiCMat group is based in the Department of Bioproducts and Biosystems and we are an active member of the broader Materials and sustainable use of natural resources key research area at Aalto University. Our research group consists of scholars at various stages of their careers, from MSc. students to Post-doc researchers. In addition, we continually host visiting scholars from other academic/research institutions around the world.

BiCMat Activity Summary 2019
BiCMat Activity Summary 2018

Our research focus:

Our research focus is on finding competitive alternatives to fossil materials through research into bio-based materials at different size scales, mainly those displaying large interfacial areas such as fibers (micro/nano fibers), fiber networks, particles and colloidal systems. We are interested in:

 

Ligno-nanocellulose and bacterial cellulose:

We utilize novel cellulosic materials from various sources to develop high value-added applications.

Multiphase systems:

We study the fundamental and utilization aspects of multiphase systems, such as dispersions, emulsions, foams, membranes and gels.

Multiphase systems have a large variety of functionalities in the application of textile products, light-weight materials, water treatment, encapsulations, etc. Current environmental concerns have prompted an increasing demand for bio-material-based multiphase systems, such as foams, emulsions, aerogels. Our research interests involves revolving the colloidal-related mechanisms in fiber-based foams for papermaking. Also, we explore the roles and capabilities of (ligno-)cellulosic materials (e.g. (lingo-)cellulosic fibers, (lingo-)nano-cellulose, etc.) in a multiphase system.

Films, filaments and hybrid materials:

We employ the versatility of lignonanocellulose and cellulose derivatives in novel film, paper and filament structures in combination with other nano- and functional materials.

Bionanomaterials are often thought to be difficult to process and limited in functionality. To enable feasible processing, we work on paper, film and filament structures which can conveniently fit into existing industrial processes. Furthermore, we see papers, films and filaments as useful model structures for demonstrating novel functionalizations.

Even though biomaterials can natively have a limited functionality, they typically have a promising chemical versatility. We employ this versatility for new purposes, such as water-resistant, thermoformable, electrically conductive, luminescent or antibacterial cellulose. With this work, we target applications that will be important for tomorrow’s society, such as composite materials, packaging, energy harvesting and rapid diagnostics.

Lignin:

We search for new, more valuable application areas for lignin, for example nanoparticles or coatings.

Lignin is the second most abundant natural raw material and nature’s most abundant aromatic polymer, which can be found in plants. Lignin is generally obtained from black liquor as a waste from pulp industry in large quantities. Although much of the lignin produced by pulp industry is currently consumed as a fuel, there are other, higher value added applications, such as carbon material precursor, emulsifier, coating, filler or substitute for metal/inorganic nanoparticles. We study these new areas for lignin utilization, envisioning lignin’s transition from waste into a valuable raw material.

Proteins:

We research the interactions between proteins and polysaccharides and thus develop materials combining these components.

Proteins, natural and renewable biomolecules, perform a vast number of functions that show great potential in various challenging applications. We study the functional properties of proteins in molecular and surface interactions, crosslinking, foaming, adsorption and separation processes. Specific areas of interest include the interactions between proteins and polysaccharides and materials combining these components. Through this work, we are aiming to improve the formability of cellulose-based materials, create antibiofouling surfaces and other functional biointerfaces relevant to the medical, biotechnological and food fields.

Bioactive cellulose:

We capitalize on the biocompatibility of cellulose in medical applications through modifications with antibodies, enzymes and other bioactive molecules.

We have introduced conjugation of short peptides to nanocelluloses for low cost and disposable sensors as well as supports for detection or separation of bioactive molecules. We aim at developing sustainable bioactive materials that can be safely disposed or regenerated. Specific topics that have been developed in our group include

  • immunoglobulin G binding and detection
  • heparin, Avidin-Biotin and other complexes
  • affibodies and C-reactive proteins
  • role of ligand spacer on passivation, binding, kinetics, and mass transfer
  • rapid immunoassays and diagnostics
3d rendering of bioactive (nano)cellulose.

We work closely with:

FinnCERES

FinnCERES is a flagship for our sustainable future, center for the materials bioeconomy.

Finnceres kehittää uusia biomateriaaleja

The HYBER Centre

The HYBER Centre was launched via the Academy of Finland's Centre of Excellence Programme 2014-2019, as the CoE in Molecular Engineering of Biosynthetic Hybrid Materials Research. HYBER combines research groups working on molecular self-assembly, genetic engineering of proteins, biotechnological production of engineered biomolecules, and plant cell wall materials.

Aalto University/HYBER

Aalto Networking Platform

The Aalto Networking Platform brings together research expertise across departments, supporting collaboration both inside and outside of Aalto.

Networking at Aalto
A photo demostrating the use of cellulose nanocrystals (CNC) for structural color on a piece of fabric.

Honors and awards

ERC Advanced Grant recipient

2018 Anselme Payen Award, the highest recognition in the area of cellulose and renewable materials

BiCMat is a part of Academy of Finland's Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials (HYBER, 2014-2019)

In 2015, Orlando Rojas received TAPPI Nanotechnology Division Technical Award and IMERYS Prize

 

Prof. Orlando Rojas

Through our research we find competitive uses of renewable biological resources.

Prof. Orlando Rojas, head of the research group

BiCMat members

Here you will find the individuals who are part of the Biobased Colloids and Materials (BiCMat) research group.

Read more
A quirky group photo of BiCMat members taken by Dragon Flower Photo Studio

Related content:

Research group related news:

Academic co-operation on the boreal forest belt launched to accelerate innovation and adoption of bio-based solutions

University of British Columbia (UBC), Aalto University and VTT are joining their strong expertise on bio-based materials by launching the Boreal Alliance. The collaboration is realized via the Finnish FinnCERES Flagship and the BioProducts Institute at UBC.

Boreal forest belt

Scientists use bacteria as micro-3D printers

Technique creates highly customised structures that could be used in regenerative medicine

With the right guidance, certain bacteria can produce 3D objects made of nanocellulose

Parallel paths: Designer and materials scientist conjure up glimmering colours out of wood

Designer Noora Yau and materials scientist Konrad Klockars have used wood to conjure up a colour, which is transparent yet glows like a copepod in shallow water. The pair’s good chemistry and open attitude towards asking silly questions is a great help in their work.

Tohtorikoulutettavat Noora Yau ja Konrad Klockars seisovat vierekkäin valkoista taustaa vasten. Heidän välissään on pystysuora puinen levy, joka on pohjaväriltään musta, mutta pinnassa on kirkkaita sinisiä ja keltaisia kuvioita. Kuva: Jaakko Kahilaniemi.

Precision solutions for healthcare

Biodesign Finland projects utilise biomaterials to repair tissue damage and support the recuperation of mental health patients with environmental design. Identifying needs correctly forms the point of departure for all this.

Biodesign, kuva: Kalle Kataila

Hollywood costume design goes sustainable

A textile artist sees natural materials as the future for costumes in television and film.

Urs Dieker working with wood, kuva Eren Öztekin

Material manufacturing from particles takes a giant step forward

Tiny fibrils extracted from plants have been getting a lot of attention for their strength. These nanomaterials have shown great promise in outperforming plastics, and even replacing them. A team led by Aalto University has now shown another remarkable property of nanocelluloses: their strong binding properties to form new materials with any particle.

nanoselluloosaverkko

Crab-shell and seaweed compounds spin into yarns for sustainable and functional materials

Biobased fibres are made from two renewable marine resources and with promise in advanced applications, in wovens and medical materials, among others. The threads draw strength from the crab chitin component and flexibility from seaweed alginate.

Ravunkuorista ja merilevästä tehtyä lankaa

Developing individualised biomaterials for medical treatment

New types of biological mesh can also be used in treating gynaecological prolapses, hernias and urinary incontinence.

Prolapse mesh.

The combination of plant-based particles and water forms an 'eco' super-glue

In a collaboration between Aalto and other research institutions, a new, ecological adhesive has been developed that rivals superglue in strength

a microscopic view of the bonding process when water is mixed with select plant-based particles

Wood-based yarn captures hormones from wastewater

Hormones and other pharmaceuticals ending up in bodies from natural waters are a globally significant environmental problem.

Puupohjainen lanka

Five ways biomaterials could improve your health

Wood is a source of many healthy agents

Kuvituskuva biomateriaaleista

New biomaterials and their market potential are at the centre of interest in the United States

How can bio-based materials be adopted as an alternative to synthetic plastics on an industrial scale? Is it possible for environmentally friendly textile production to be profitable?

New York_June 2019

The next material revolution will start in the forest

Plastic straws and utensils will soon be history but they will not be missed, as something much better will replace them.

A green leaf. Photographer: Aleksi Poutanen.

Aalto University and VTT launch a major innovation ecosystem aimed at doubling the value of forest industry

Aalto University and VTT Technical Research Centre of Finland signed a collaboration agreement on the CERES flagship programme.

Aalto University President Ilkka Niemelä (left) is hoping CERES to bring solutions especially to microplastic problems. VTT President and CEO Antti Vasara is excited about biodegradable electronics.

ERC Advanced Grants for Peter Liljeroth and Orlando Rojas

The European Research Council (ERC) has awarded their €2.5-million-each Advanced Grants to Aalto University professors Peter Liljeroth and Orlando Rojas.

Peter Liljeroth (l.) and Orlando Rojas (r.) will explore and fabricate completely new materials with their ERC Advanced Grants.

Anselme Payen Award to Orlando Rojas

Awarded in 2018, Rojas received the medal and honorarium at the American Physical Society's Cellulose and Renewable Materials Division 2019 Spring meeting in Florida

Orlando Rojas and the Biobased Colloids and Materials research group celebrate his 2018 Anselme Payen award for contributions to celluose research.

A simple method developed for 3D bio-fabrication based on bacterial cellulose

Bacterial cellulose can be used in food, cosmetics and biomedical applications, such as implants and artificial organs.

Professor Orlando Rojas to receive the prestigious Anselme Payen Award

The award is one of the most important and internationally recognized awards in the field of cellulose and renewable materials.

Professor Rojas (second row, far left) with his research group. Photo: Valeriya Azovskaya

Professor Orlando Rojas received 2015 Nanotechnology Division Technical Award and IMERYS Prize

TAPPI announced 2015 Nanotechnology Division Technical Award Winner

Research group related events:

FinnCERES Public seminar: Fibre and Beyond

Join us to explore some of the latest discoveries, innovations and applications in the world of bio-based materials. Our experts as well as guest speakers from Boreal Alliance will present exciting news from the field of wood-based bioeconomy.

Fibre and Beyond

FinnCERES: Will the Bio-Bubble Burst?

Will new EU guidelines and directives on microplastics and single-use plastics threaten the future of new bio-based materials? What is the general atmosphere in EU countries on the use of forest biomass? Join the FinnCERES event to learn more!

Illustration of hand holding a pin on a bubble labeled bio

Capturing microplastics and pharmaceuticals from waste water

Hormones and other pharmaceuticals ending up in bodies from natural waters are a globally significant environmental problem.

Nanocellulose yarn that captures hormones from waste water. Photo: FINNCERES

Shimmering Wood by Structural Colour Studio

Nature’s brightest colours – like those found in peacock feathers or butterfly wings – are created through microscopically small nanostructures.

Wood-based structural shimmering wood colour has no colour pigments. Photo: Valeria Azovskaya

Solar energy through ChemisTree

Is it possible to use trees in electricity production? Surprisingly, yes, it is! Transparent cellulose films enable greater efficiency of solar cells through their haze effect.

Solar Energy Through ChemisTree Photo: Glen Forde

Naturally Dramatic

Sustainable costume design is still in its early days. Despite efforts to move to 'greener' processes, stage and film productions still make costumes in traditional ways with little regard for their impact on the environment or employees.

Colourful costume made with sustainable, natural materials by Urs Dierker
BiCMat Publications

Latest publications:

Selective Laser Sintering of Lignin-Based Composites

Rubina Ajdary, Niklas Kretzschmar, Hossein Bani Asadi, Jon Trifol Guzman, Jukka Seppälä, Jouni Partanen, Orlando Rojas Gaona 2021 ACS Sustainable Chemistry and Engineering

Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses

Long Bai, Siqi Huan, Ya Zhu, Guang Chu, David Julian McClements, Orlando J. Rojas 2021 ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY

Single-step fiber pretreatment with monocomponent endoglucanase : Defibrillation energy and cellulose nanofibril quality

Gabriela L. Berto, Bruno D. Mattos, Orlando J. Rojas, Valdeir Arantes 2021 ACS Sustainable Chemistry and Engineering

Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviors

Antonio M. Borrero Lopez, Ling Wang, Concepción Valencia, José M. Franco, Orlando Rojas 2021 Composites Science and Technology

Self-Assembled Nanorods and Microspheres for Functional Photonics : Retroreflector Meets Microlens Array

Guang Chu, Feng Chen, Bin Zhao, Xue Zhang, Eyal Zussman, Orlando J. Rojas 2021 ADVANCED OPTICAL MATERIALS

Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology

Emily G. Facchine, Long Bai, Orlando J. Rojas, Saad A. Khan 2021 Journal of Colloid and Interface Science

Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions

Wenjiao Ge, Shan Cao, Yang Yang, Orlando J. Rojas, Xiaohui Wang 2021 Chemical Engineering Journal

3D printed manifolds for improved flow management in electrodialysis operation for desalination

Alvaro Gonzalez-Vogel, Francisco Felis-Carrasco, Orlando J. Rojas 2021 Desalination

High frequency pulsed electrodialysis of acidic filtrate in kraft pulping

Alvaro Gonzalez-Vogel, Juan J. Moltedo, Rafael Quezada Reyes, Alex Schwarz, Orlando J. Rojas 2021 Journal of Environmental Management

Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture

Renato Grillo, Bruno D. Mattos, Debora R. Antunes, Mariana M.L. Forini, Fazel A. Monikh, Orlando J. Rojas 2021 NANO TODAY
More information on our research in the Research database.
Research database

Find us at:

Vuorimiehentie 1

Aalto Bioproduct Centre

Vuorimiehentie 1

School Latest News:

Kerrostalo ja kallioita
Cooperation, Press releases, Research & Art Published:

The SUBURBAN PRIDE project examines the relationship between mental images of suburbs and the built environment

The multidisciplinary project combines history of architecture, sociology, and research in critical cultural heritage and landscape architecture. The purpose of the project, based on research and workshops, is to build a sustainable future for suburbs.
Biorefinery and fuels
Cooperation, Research & Art Published:

Renewable fuel made from biorefinery residues

Lignin-based automotive and aviation fuels are one step closer to market as a new EU-funded project aims to develop new production methods for lignin-based transport fuels.
Kaksi poikaa leikkimässä ilta-auringossa kaupungin viheralueella, jonka keskellä on pieni lampi ja sen ympärillä kiviasetelma.
Cooperation, Research & Art Published:

The potential of urban green spaces in climate change mitigation

Aalto University is involved in the CO-CARBON research project, which seeks ways to integrate the carbon sequestration of green spaces in urban planning and decision-making.
Professor Minna Halme. Photographer: Veera Konsti.
University Published:

Sustainability is one of the four School of Business key strategic initiatives

Professor Minna Halme: Business schools play a key role in solving sustainability challenges.

Events:

Brooklyn Bridge
Dissertations

Defence of dissertation in the field of industrial engineering and management, M.Sc. Jere Lehtinen

Title of the doctoral thesis is "External stakeholder engagement in complex projects"
AQPseminars_GabrielTopp
Online event

AQP Seminar: Floquet moiré engineering

Aalto Quantum Physics Seminars (Zoom). Speaker: Dr Gabriel E. Topp (Aalto University, Department of Applied Physics)
NODUS Talks
Online event

NODUS TALKS Food Sovereignty. People's Sovereignty!

Online presentations and panel discussion with Aslihan Oguz & Ruby Van Der Wekken.
Dissertations

Defence of dissertation in the field of Bioproduct technology, M.Sc(tech.) Guillaume Riviere

The title of the dissertation is: Transformation of lignin and lignocellulose into nanoparticle: Structure-property relationship and applications
  • Published:
  • Updated:
Share
URL copied!