News

A simple method developed for 3D bio-fabrication based on bacterial cellulose

Bacterial cellulose can be used in food, cosmetics and biomedical applications, such as implants and artificial organs.

 

Bacterial cellulose bio-fabricated in the shape of an ear via superhydrophobized molding. Photo: Luiz G. Greca

Bacterial cellulose (BC) nanofibers are promising building blocks for the development of sustainable materials with the potential to outperform conventional synthetic materials. BC, one of the purest forms of nanocellulose, is produced at the interface between the culture medium and air, where the aerobic bacteria have access to oxygen. Biocompatibility, biodegradability, high thermal stability and mechanical strength are some of the unique properties that facilitate BC adoption in food, cosmetics and biomedical applications including tissue regeneration, implants, wound dressing, burn treatment and artificial blood vessels.

In the study published in Materials Horizons researchers at Aalto University have developed a simple and customizable process that uses superhydrophobic interfaces to finely engineer the bacteria access to oxygen in three dimensions and in multiple length scales, resulting in hollow, seamless, nanocellulose-based pre-determined objects.

“The developed process is an easy and accessible platform for 3D biofabrication that we demonstrated for the synthesis of geometries with excellent fidelity. Fabrication of hollow and complex objects was made possible. Interesting functions were enabled via multi-compartmentalization and encapsulation. For example, we tested in situ loading of functional particles or enzymes with metal organic frameworks, metal nanoparticles with plasmon adsorption, and capsule-in-capsule systems with thermal and chemical resistance”, explains Professor Orlando Rojas.

This facilitated biofabrication can be explored in new ways by the biomedical field through scaffolding of artificial organs. Advances in bioengineering, for instance by genome editing or co-culture of microorganisms, might also allow further progress towards the simplified formation of composite materials of highly controlled composition, properties and functions. 

Further information: 

Professor Orlando Rojas
Aalto University
[email protected]
+358 50 5124 227

Article:

Luiz G. Greca, Janika Lehtonen, Blaise L. Tardy, Jiaqi Guoa and Orlando J. Rojas, Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route
Materials Horizons 2018, Advance Article
DOI: 10.1039/C7MH01139C  
http://dx.doi.org/10.1039/C7MH01139C

  • Published:
  • Updated:
Share
URL copied!

Read more news

Professori Monika Österberg.
Research & Art Published:

Professor Monika Österberg's team received funding for the development of bio-based packaging materials

The Finnish Research Foundation funding given to Professor Monika Österberg's team will enable Aalto University and Kemira to explore the possibilities of developing fully bio-based packaging materials to reduce the use of plastics in the packaging industry.
designtalks_banner.jpg
Research & Art, University Published:

DesignTalks highlights the relevance of good design and how it benefits us all

Find all DesignTalks recordings here – they're available for everyone, offering an opportunity to easily explore the role and relevance of design in different contexts
people exploring the walk-in closet that provides solutions for a sustainable fashion and textiles future
Cooperation, Research & Art, University Published:

'Wardrobe of the future' – sustainable solutions for the fashion and textile industry

The exhibition is showcasing solutions from researchers and students on sustainable future for the fashion and textile industry.
FinnFusion is a collaboration aiming to make fusion energy a reality. Photo: VTT.
Cooperation, Press releases, Research & Art Published:

Aalto Scientists Experiment with Helium Plasma to Help Pave Way for Fusion Energy

As part of FinnFusion, itself belonging to the EUROfusion consortium, Aalto scientists are experimenting with helium plasma to improve the future operations of Iter, an international fusion energy collaboration under construction in France.