News

A simple method developed for 3D bio-fabrication based on bacterial cellulose

Bacterial cellulose can be used in food, cosmetics and biomedical applications, such as implants and artificial organs.

Bacterial cellulose bio-fabricated in the shape of an ear via superhydrophobized molding. Photo: Luiz G. Greca

Bacterial cellulose (BC) nanofibers are promising building blocks for the development of sustainable materials with the potential to outperform conventional synthetic materials. BC, one of the purest forms of nanocellulose, is produced at the interface between the culture medium and air, where the aerobic bacteria have access to oxygen. Biocompatibility, biodegradability, high thermal stability and mechanical strength are some of the unique properties that facilitate BC adoption in food, cosmetics and biomedical applications including tissue regeneration, implants, wound dressing, burn treatment and artificial blood vessels.

In the study published in Materials Horizons researchers at Aalto University have developed a simple and customizable process that uses superhydrophobic interfaces to finely engineer the bacteria access to oxygen in three dimensions and in multiple length scales, resulting in hollow, seamless, nanocellulose-based pre-determined objects.

“The developed process is an easy and accessible platform for 3D biofabrication that we demonstrated for the synthesis of geometries with excellent fidelity. Fabrication of hollow and complex objects was made possible. Interesting functions were enabled via multi-compartmentalization and encapsulation. For example, we tested in situ loading of functional particles or enzymes with metal organic frameworks, metal nanoparticles with plasmon adsorption, and capsule-in-capsule systems with thermal and chemical resistance”, explains Professor Orlando Rojas.

This facilitated biofabrication can be explored in new ways by the biomedical field through scaffolding of artificial organs. Advances in bioengineering, for instance by genome editing or co-culture of microorganisms, might also allow further progress towards the simplified formation of composite materials of highly controlled composition, properties and functions. 

Further information: 

Professor Orlando Rojas
Aalto University
orlando.rojas@aalto.fi
+358 50 5124 227

Article:

Luiz G. Greca, Janika Lehtonen, Blaise L. Tardy, Jiaqi Guoa and Orlando J. Rojas, Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route
Materials Horizons 2018, Advance Article
DOI: 10.1039/C7MH01139C  
http://dx.doi.org/10.1039/C7MH01139C

  • Updated:
  • Published:
Share
URL copied!

Read more news

Aalto University's exhibition stand at an event with a large crowd moving under a purple-lit cube.
Research & Art Published:

Aalto at Slush: creative design and new innovations

Aalto University's Slush exhibition featured the design-based material innovation Bubbles with Benefits. The exhibition also highlighted the importance of design as a driver of technological innovation.
Research & Art, Studies Published:

New recommendation: doctoral students’ plans (DPSP) to be discussed twice a year

Doctoral students and supervising professors are encouraged to use the My Dialogue schedule to discuss the Doctoral personal study plan (DPSP).
Learning Centre graphics
Research & Art, Studies Published:

Remember to pay attention to the terms of use of electronic resources

A wide range of electronic resources has been acquired for the use of Aalto University students and researchers. However, it is good to remember that all use of the materials acquired by the Aalto University Learning Centre is subject to the terms of use.
Black text on blue background: #27 ShanghaiRanking Global Ranking of Academic Subjects 2025
Research & Art Published:

Aalto University's marine technology ranked 27th globally

Seven fields of Aalto University ranked among the top one hundred in the prestigious Shanghai Ranking Global Ranking of Academic Subjects