News

The combination of plant-based particles and water forms an 'eco' super-glue

Plant-based cellulose nanocrystals have remarkable inherent properties, and when combined with water, a powerful adhesive is formed that competes in strength with Superglue, without the need for toxic solvents.
a microscopic view of the bonding process when water is mixed with select plant-based particles
Microscopic view of the bonding process

In a study published in Advanced Materials, researchers at Aalto University, the University of Tokyo, Sichuan University, and the University of British Columbia have demonstrated that plant-derived cellulose nanocrystals (CNCs) can form an adhesive that fully integrates the concepts of sustainability, performance, and cost which are generally extremely challenging to achieve simultaneously.

Unlike Superglue, the new eco glue develops its full strength in a preferred direction, similar to 'Peel and Stick' adhesives. When trying to separate the glued components along the principal plane of the bond, the strength is more than 70 times higher when compared to the direction perpendicular to that plane. All of this means that just a few drops (less than 2 mg per 0.0001-meter square) of the 'eco' glue has enough strength to hold up to 90kg weight, but can still be easily removed by the touch of a finger, as needed. As Dr Blaise Tardy from the Aalto Department of Bioproducts and Biosystems puts it, ‘The ability to hold this amount of weight with just a few drops is huge, especially from a natural plant-based solution’.

These kind of properties are useful in protecting fragile components in machines that can undergo sudden physical shock such as high-value components in microelectronics, to increase the reusability of valuable structural and decorative elements, in new solutions for packaging applications, and – in general – for the development of greener adhesive solutions.

Research image of the adhesive at microscopic level

Producing a comparable product to a market leader at low cost and with new properties

Furthermore, compared to the current approach of making high-strength glues that can involve complex and expensive routes, the team has demonstrated that their solution is just taking biobased particles sources from plants (with a comparatively negligible cost) and just adding water. Since curing time is associated with evaporation of the water phase (~2 hours, currently), it can be controlled, for instance, with heat.

Aalto Professor Orlando Rojas says, ‘Reaching a deep understanding on how the cellulose nanoparticles, mixed with water, to form such an outstanding adhesive is a result of the work between myself, Dr Tardy, Luiz Greca, Professor Hirotaka Ejima, Dr Joseph J. Richardson and Professor Junling Guo and it highlights the fantastic collaboration and integration of knowledge towards the development of an extremely appealing, low-cost and safe application’.

Good, green packaging with bad glue still renders the packaging bad

Dr Blaise Tardy

Moreover, the prospects for worldwide utilisation (in a 40B€ industry) is quite attractive given the ever-increasing production of cellulose nanocrystals seen across the globe, as supported by incentives in the framework of the circular bioeconomy.

Dr Tardy adds, ‘The truly exciting aspect of this is that although our new adhesive can be sourced directly from residual biomass, such as that from the agro-industry or recycled paper; it outperforms currently available commercial synthetic products by a great many measures’.

Link to the paper: 
Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces – Advanced Materials 
(https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201906886)

Professor Orlando Rojas
[email protected]
+358505124227

Dr Blaise Tardy
[email protected]

Luiz Greca
[email protected]
+358503841761

  • Published:
  • Updated:

Read more news

Professor Riikka Puurunen, Professor Patrick Rinke and IT Application Owner Lara Ejtehadian holding sunflowers and diplomas
Awards and Recognition, Campus, Research & Art Published:

Aalto Open Science Award ceremony brought together Aaltonians to discuss open science

Last week we gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2023 and discuss open science matters with the Aalto community.
Three female students studying
Research & Art Published:

Seed funding available to boost collaboration between Aalto, KU Leuven and University of Helsinki

Aalto University, KU Leuven and the University of Helsinki launch the 2nd exploratory seed funding call to explore research collaboration possibilities. The funding call is open until 10 September 2024.
Donation to Recycling Centre's Boksi donation point
Campus Published:

Kierrätyskeskus Boksi donation point now in A Bloc

Boksi is located on the 1st floor of shopping center A Bloc, opposite R-kioski, and is available during the center’s opening hours.
Taija Votkin showing 360 camera use and Tomi Kauppinen and Jutta Tavaila recording a podcast episode
Cooperation, University Published:

Workshop day for teachers: 360° environments and podcasts

On Tuesday 4.6. a workshop day consisting of 360° environment creation and podcast production provides a way to get to know these media in practice. Feel free to join both workshops or one of them according to your time and interest.