News

Wood-based yarn captures hormones from wastewater

Hormones and other pharmaceuticals ending up in bodies from natural waters are a globally significant environmental problem.
Puupohjainen lanka
The surface of the yarn is coated with a cyclic sugar that captures the compounds into the cavities of the fibre as it swells in water. Photo: VTT

VTT and Aalto University have developed a wood-based cellulose fibre yarn that is an affordable solution for capturing pharmaceutical substances – especially ethinylestradiol in contraceptive pills – that would otherwise end up in bodies of water.

By attaching a cyclic sugar onto the surface of the cellulose fibre yarn, the research scientists were able to create a material that efficiently captures ethinylestradiol (EE2), a hormone used in contraceptive pills. The cyclic sugars are bonded chemically onto the surface of the yarn. The sugars form a pocket into which hydrophobic pharmaceutical substances seek to enter. This way, it only takes a few minutes for pharmaceutical compounds to become bound to the cyclodextrins coupled to the surfaces and cavities of the fibre. Test results demonstrate that one gram of fibre yarn can capture approximately 2.5 milligrams of the hormone. 

'Hormone capture would be most effective in wastewater treatment plants and hospitals, since the wastewater in these facilities contains a higher concentration of the compounds. We are developing a wood-based affordable material that could be thrown into a tank in a wastewater treatment plant or used as a filter in a pipe connected to the tank. After some time, the material is collected mechanically. It is disposed of by incineration, but it is also possible to separate the pharmaceuticals and reuse the material,' describes VTT's Senior Scientist Hannes Orelma.

The development effort used wood-pulp-based fibre yarn that was manufactured using deep eutectic solvents (DES) in a method developed by VTT. DESes represent a new generation of organic solvents, some of which can be environmentally very friendly. This research used an environmentally friendly DES.

'It would be interesting to test how effectively the cellulose yarns can capture hormones and pharmaceuticals from wastewater at a larger scale,' states Orelma.

Hormones and other pharmaceutical agents ending up in bodies of water are a major problem in Central Europe and the United States, where the reported concentrations of oestrogen hormones have reached up to 0.83 micrograms per litre. These hormones are called endocrine disruptors, since they affect the gender of fish and turn male fish into females. The EU has identified pharmaceuticals in waters as a challenging problem, since wastewater treatment plants cannot capture the substances efficiently enough. At present, wastewater treatment plants capture pharmaceuticals by means of activated sludge tanks, but a portion of the compounds nevertheless escape the tanks and end up in bodies of water.

The development of the material started in 2015 as a collaborative effort between VTT and Aalto University. The development was funded by Tekes (currently known as Business Finland) under the Design Driven Value Chains in the World of Cellulose II project. At present, the design and development of the material is supported by the Academy of Finland and proceeds in the FinnCERES Materials Cluster that develops entirely new kinds of biomaterials. Clean air and water is one of the key research themes of FinnCERES.

VTT has patented the method and tested it at laboratory scale. The research results were published in BioMacromolecules in 2018: https://pubs.acs.org/doi/full/10.1021/acs.biomac.7b01765

More information:

Senior Scientist Hannes Orelma, VTT
+358 40 354 3143
[email protected]

FinnCERES

  • Published:
  • Updated:
Share
URL copied!

Related news

Tummatukkainen nainen katsoo suoraan kameraan, hänellä on punainen mekko yllään ja taustalla vaalea seinä
Research & Art Published:

‘Materials shape our understanding of the environment’

Dissertation of the Month: Bilge Aktaş believes that if we start paying more attention to what happens in the world beyond humans, we can start repairing our relationship with the environment.
Aalto University
Research & Art Published:

Installation Talks of seven new tenured professors of the School of Engineering

Our new Associate & Full level tenure track professors tell us about their research on short videos.
Smart City Challenge
Research & Art Published:

Four smart city pilot projects start in January 2021

Altogether 71 ideas were proposed to the international challenge for smart cities. 
ARTS open science roadshow, pic of the session
Research & Art Published:

European Open Science Cloud (EOSC) Finnish Forum webinar on 25th January

One of the speakers is Karel Luyben, the first president of the EOSC Association and a member of board at Aalto University.