Department of Bioproducts and Biosystems

Bioproduct Chemistry

The Bioproduct Chemistry group is led by Prof. Monika Österberg. We work on the development of renewable, high added-value materials based on lignocellulosics. Our research is especially focused on understanding interfacial properties using atomic force microscopy (AFM, imaging and force measurements), quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), and X-ray photoelectron spectroscopy (XPS), among other techniques.
CHEM_Bio_Foam and woad research
Foams and woad prints research

Our research areas:

  1. Added value materials from biocolloids (e.g., foams, hydrogels, composites)
  2. Sustainable surface functionalization of cellulosics (e.g., textiles, barrier materials)
  3. Side-stream valorization (e.g., lignin, waxes, extracts)

FinnCERES - Flagship for boosting bioeconomy

Boosting the world’s bioeconomy by developing new bio-based materials with Aalto University and VTT, companies, and research organizations through a shared passion to create a sustainable future and a belief in innovations based on solid scientific foundations.

Read more
Birch leaves. Photo: Valeria Azovskaya

FinnCERES projects

Composite image, left black outlines of partially transparent spheres on blue background; right 3D printed soft beige material in a cylinder shape
Photo composite by Bioproduct Chemistry

Added-value materials from biocolloids

Aiming for more sustainable use of natural resources, we work on the development of new value-added materials based on cellulose nanofibrils, hemicelluloses, and colloidal lignin particles to replace fossil-oil-based materials in areas ranging from packaging and coatings to tissue engineering.

Biocolloid projects

Composite image: left graphic depicting laser beam hitting surface in force measurement device; right a bead of water sitting on top of a white knit sweater with a blue background
Graphic by Bioproduct Chemistry group, photo by Valeria Azovskaya

Sustainable surface functionalization of cellulosics

We explore different green approaches for surface modification. Nontoxic approaches for protective coating solutions with controlled breathability for surfaces like wood and textiles are explored. We investigate fundamental understanding of the surface interactions and film formation for the development of bio-based barrier materials.

Surface functionalization projects

Composite image left of a halved nanosphere particle, right photograph of three nanopaper squares dyed with red onion skins against a blue sky clouds background
Image by Bioproduct Chemistry group, photo by Rafael Grande

Side-stream valorization

An important part of our research is devoted to the transformation of waste lignin from biorefineries and pulp industries into high-added-value products. The preparation, modification and utilization of lignin nanoparticles are at the core of this research line. Bio-based coatings, adhesives, and composites are some examples of commercial applications of colloidal lignin particles we are working on.

Components from bark extracts are also studied as biocolorants and for packaging, and other added-value applications. One project is to develop bio-based dyes and pigments to replace synthetic dyes commonly used in the textile industry.

Valorization projects

Photo of 13 smiling people standing on a rock with the sunset in the background
Group outing in October 2021

Join us!

Highly motivated MSc, doctoral or postdoctoral students interested in joining the team should contact Prof. Österberg ([email protected]). 

Student summer projects provide insights into bioproduct chemistry research

Three summer students contributed to research projects in the Bioproduct Chemistry group in 2022, gaining experience and skills in research techniques, and materials identification and characterization.

Read more
A person with a lab coat and protective gloves carrying test tubes and a black-and-white notebook. Their face is not pictured.

Follow us:

Related content:

Lignin nanoparticles: A sustainable recipe for combining cellulose with hydrophobic polymers for advanced applications

The Bioproduct Chemistry team at Aalto University have designed a sustainable method to produce strong and flexible cellulosic films that incredibly maintain their strength even when wet.

Sinisiin muovihanskoihin puetut kädet taivuttavat ruskeaa kalvoa, jonka päällä on vesipisara.

Eco-glue can replace harmful adhesives in wood construction

A fast and energy-efficient manufacturing process results in a strong, non-toxic and fire-resistant adhesive—and a great opportunity for the Finnish bioeconomy.

A piece of wood panel containing eco glue

Bio-based coating for wood outperforms traditional synthetic options

Researchers turn a non-toxic residue into wood coating that resists abrasion-, stain-, and sunlight.

Ligniinillä käsitelty tuoli

Aalto at Slush 2021: Startups for a more sustainable world

The world’s leading startup event is back and Aalto University is again along for the ride.

Aalto at Slush 2021

Academic co-operation on the boreal forest belt launched to accelerate innovation and adoption of bio-based solutions

University of British Columbia (UBC), Aalto University and VTT are joining their strong expertise on bio-based materials by launching the Boreal Alliance. The collaboration is realized via the Finnish FinnCERES Flagship and the BioProducts Institute at UBC.

Boreal forest belt

Monika Österberg starts as Head of Department at BIO2

Professor Monika Österberg has been nominated as the Head of Department at the Department of Bioproducts and Biosystems (BIO2), starting January 1, 2021. Her term is for three years. She has acted as Vice Head of Department since the beginning of the year 2020.

Monica Österberg

Using lignin to replace fossil materials

Ball-like lignin particles developed by researchers open up completely new possibilities for the utilisation of lignin.

The research and utilisation of ball-like lignin particles  is still new, but the production is already possible in batches of several kilogrammes. That makes it possible to test them in different applications, says Professor Monika Österberg. Photo: Glen Forde/Materials Platform

Breakthrough in lignin research: spherical particles multiply enzyme efficiency

Lignin, a pulp industry by-product, could replace fossil materials.

Biocatalysts (pictured at the bottom of the vial), supported by spherical lignin particles and embedded in natural polymer matrix, open new avenues to green synthesis reactions in the presence of water. Photo: Valeria Azovskaya

Latest publications:

Core-Selective Silver-Doping of Gold Nanoclusters by Surface-Bound Sulphates on Colloidal Templates: From Synthetic Mechanism to Relaxation Dynamics

Sourov Chandra, Alice Sciortino, Shruti Shandilya, Lincan Fang, Xi Chen, Hua Jiang, Leena Sisko Johansson, Marco Cannas, Janne Ruokolainen, Robin H.A. Ras, Fabrizio Messina, Bo Peng, Olli Ikkala 2023 ADVANCED OPTICAL MATERIALS

Gold Au(I)6 Clusters with Ligand-Derived Atomic Steric Locking: Multifunctional Optoelectrical Properties and Quantum Coherence

Sourov Chandra, Alice Sciortino, Susobhan Das, Faisal Ahmed, Arijit Jana, Jayoti Roy, Diao Li, Ville Liljeström, Hua Jiang, Leena Sisko Johansson, Xi Chen, Marco Cannas, Thalappil Pradeep, Bo Peng, Robin H.A. Ras, Zhipei Sun, Olli Ikkala, Fabrizio Messina 2023 ADVANCED OPTICAL MATERIALS

In Situ Adsorption of Red Onion (Allium cepa) Natural Dye on Cellulose Model Films and Fabrics Exploiting Chitosan as a Natural Mordant

Rafael Grande, Riikka Räisänen, Jinze Dou, Satu Rajala, Kiia Malinen, Paula A. Nousiainen, Monika Österberg 2023 ACS Omega

Current strategies for industrial plastic production from non-edible biomass

Lorenz P. Manker, Marie J. Jones, Stefania Bertella, Jean Behaghel de Bueren, Jeremy S. Luterbacher 2023 Current Opinion in Green and Sustainable Chemistry

Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater

Mohammed Azeez Naji, Hamed Salimi-Kenari, Qusay F. Alsalhy, Raed A. Al-Juboori, Ngoc Huynh, Khalid T. Rashid, Issam K. Salih 2023 Membranes

Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications

Jéssica S. Rodrigues, Amanda De S.M. de Freitas, Cristiane C. Maciel, Chamseddine Guizani, Davide Rigo, Marystela Ferreira, Michael Hummel, Mikhail Balakshin, Vagner R. Botaro 2023 International Journal of Biological Macromolecules

FinnCERES Flagship – A Competence Centre for the Materials Bioeconomy

Tekla Tammelin, Stina Grönqvist, Jukka Hassinen, Monika Österberg, Orlando J. Rojas 2023 NWBC 2022

Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials

Monika Österberg, K. Alexander Henn, Muhammad Farooq, Juan José Valle-Delgado 2023 Chemical Reviews

High-resolution 3D printing of xanthan gum/nanocellulose bio-inks

Hossein Baniasadi, Erfan Kimiaei, Roberta Teixeira Polez, Rubina Ajdary, Orlando Rojas Gaona, Monika Österberg, Jukka Seppälä 2022 International Journal of Biological Macromolecules

Unlocking the Potential of Lignin in Material Applications via its Simultaneous Isolation and Multi-Functionalization

Stefania Bertella, Vijay Kumar Rana, Peyman Karami, Lukasz Richter, Francesco Stellacci, Dominique Pioletti, Jeremy S. Luterbacher 2022 NWBC 2022
More information on our research in the Research database.
Research database
  • Published:
  • Updated:
Share
URL copied!