News

Breakthrough in lignin research: spherical particles multiply enzyme efficiency

Lignin, a pulp industry by-product, could replace fossil materials.
Biocatalysts (pictured at the bottom of the vial), supported by spherical lignin particles and embedded in natural polymer matrix, open new avenues to green synthesis reactions in the presence of water. Photo: Valeria Azovskaya

Researchers at Aalto University and York University have succeeded in creating a water-repellent composite structure out of lignin particles, in which the enzymes or biocatalysts can be separated from surrounding water. The breakthrough was accomplished when the researchers discovered that, by regulating the surface charge of single lignin particles, enzymes can be made to adhere to the surface of particles. As material supporting the structure, they utilised a natural polymer isolated from seaweed.

The starting point for the research was the need to utilise lignin, a pulp industry by-product, for new, large-scale purposes. The researchers were surprised to discover that, when introduced, the lignin particles multiplied enzyme efficiency and enabled enzyme recycling in a synthetic reaction that would not otherwise occur in water.

“The beauty of this method lies in its simplicity and scalability. We are already able to manufacture lignin particles in batches of several kilogrammes. Of course, we hope that this will become a sustainable option for the enzyme industry to replace fossil materials in technical applications”, says Postdoctoral Researcher Mika Sipponen.

Lignin not only multiplies enzyme efficiency, it also shows good results in comparison to those substances currently on the market, created from unsustainable sources. “The commercial enzyme we use as reference is attached to the surface of synthetic acrylic resin produced from fossil raw materials. In comparison, this new biocatalyst was at best twice as active”, Sipponen adds.

In the reaction, alcohol and organic acid created in biofuel production produced a water-insoluble ester with a pineapple scent. The process opens up new possibilities for the production of bio-based polyesters, as well.

“We are pleased that the years of investing in the lignin particle research are beginning to produce significant results. We envision several possible uses for spherical particles in green chemistry processes and the development of new materials”, says research leader Professor Monika Österberg.

The research was funded by the Academy of Finland.

The article “Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media” was published today in Nature Communications, DOI 10.1038/s41467-018-04715-6, https://www.nature.com/articles/s41467-018-04715-6

For more information:

Dr. Mika Sipponen
[email protected]
tel +358503013978                    

Prof. Monika Österberg          
[email protected]
tel +358505497218

  • Published:
  • Updated:
Share
URL copied!

Related news

two men shaking hands
Honoured, Research & Art Published:

Metex Prize to Ville Piippo

The thesis, in the field of design, focuses on driving ergonomics and sustainable design of an electric motorbike.
Janne Lindqvist seisoo mustassa puvussa taustallaan Aallon A-kirjainvalotaulu ja valotaideteos seinällä
Research & Art Published:

Janne Lindqvist is the first person in Finland to receive a Mozilla Research Grant – supports making the internet a better place

The Mozilla Foundation awards researchers with unrestricted gifts, which makes them highly competitive
Janne Lindqvist
Research & Art Published:

Janne Lindqvist: You can’t help if you stay in the ivory tower

This sociable professor of computer science knows how to forge his own path and trusts his instinctive curiosity towards different research topics.
maankäyttö
Press releases, Research & Art Published:

Feeding the world without wrecking the planet is possible

Almost half of current food production is harmful to our planet – causing biodiversity loss, ecosystem degradation and water stress. But as world population continues to grow, can that last?