News

Bio-based coating for wood outperforms traditional synthetic options

Researchers turn a non-toxic residue into wood coating that resists abrasion, stain, and sunlight.
Ligniinillä käsitelty tuoli
A chair applied with lignin. Chair design: Saara Kantele Picture: Fotoni Film & Communications

Due to the global efforts to meet sustainability standards, many countries are currently looking to replace concrete with wood in buildings. France, for example, will require that all new public buildings will be made from at least 50 percent wood or other sustainable materials starting in 2022.  

Because wood is prone to degradation when exposed to sunlight and moisture, protective coatings can help bring wood into wider use. Researchers at Aalto University have used lignin, a natural polymer abundant in wood and other plant sources, to create a safe, low-cost and high-performing coating for use in construction. 

‘Our new coating has great potential to protect wood. It's more water repellent than a lot of commercial coatings because it retains the natural structure of wood and its micro-scaled roughness. Since it's hydrophobic, the coating is also quite resistant to stains, while lignin’s inherent structure resists colour changes from sunlight. It also does an excellent job of retaining wood’s breathability,’ explains Alexander Henn, doctoral candidate at Aalto University, The School of Chemical Engineering.

Lignin is often regarded as a waste product of pulping and biorefinery processes. Each year, about 60-120 million tonnes of lignin is isolated worldwide, of which 98 percent is incinerated for energy recovery. Lignin has several beneficial properties; however, the poor solubility of most lignin types and the mediocre performance of lignin-based products have so far limited its commercial applications.   

‘Lignin as a coating material is actually very promising with its many benefits compared to the synthetic and bio-based coatings currently used. It has excellent anti-corrosion, anti-bacterial, anti-icing, and UV-shielding properties. Our future research will concentrate on developing characteristics like elasticity of the coating’, says Monika Österberg, Head of the Department of Bioproducts and Biosystems at Aalto University.

Currently, widely used mechanically protective coatings for materials such as wood, concrete, metals, and composites are petroleum-based, which include substances that are harmful for the environment.  Vegetable-oil coatings — like those made from tall, linseed, coconut, soybean, and castor — can be more sustainable alternatives but they often lack durability. As a result, these oils are often combined with synthetic materials to improve their performance.  

More sustainable and non-toxic alternatives can help the coating industry meet new safety regulations. For example, the amount of volatile organic compounds (VOCs) has been regulated not only due to their impact on health but also on the ozone layer. Similarly, the European Union (EU) has placed restrictions on some chemicals used by the coating industry, such as bisphenol A and formaldehyde (used in epoxy and polyurethane coatings), and recently classified titanium dioxide —  one of the most widely used pigments in paints — as a class II carcinogen.  

The study is published in ACS Applied Materials & Interfaces on 15 July 2021.

Ligniinillä käsitelty puu
Water-repellent wood coating protects against stains and sun induced colour changes while maintaining wood's breathability and natural roughness.

Further information: 

Article: Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings

Alexander Henn
Doctoral Candidate
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University
[email protected]
Tel: +358503091259 

Monika Österberg
Professor and Head of Department
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University
[email protected] 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Physicists make square droplets and liquid lattices. Picture: Active Matter research group led by Prof. Timonen, Aalto University
Press releases Published:

Physicists make square droplets and liquid lattices

Driving systems out of equilibrium with electric fields proves useful for creating liquid shapes that are nearly impossible to find in nature
Avajaispuheen studiotilanne
Press releases, University Published:

President Ilkka Niemelä: ‘Cuts to research are always cuts to education’

European Commissioner for International Partnerships Jutta Urpilainen and Chair of the Aalto University Student Union Milja Leinonen also spoke at opening of the academic year. The ceremony was held online.
NDI-Policy-Brief-Training-2021
Press releases Published:

Learning the art of science communication in the NDI Policy Brief Training workshop

The Northern Dimension Institute hosted the third Policy Brief Training workshop on Sept. 1, 2021.
Kerrostaloja Myyrmäessä
Press releases, Research & Art Published:

Investors turn to suburbs – with varying results

One- and two-room-flats are being built in Myyrmäki, and family apartments in Myllypuro. The difference is explained above all by various planning and land transfer requirements, says researcher Johanna Lilius. The revival of housing estate neighbourhoods can become expensive for older residents.