Department of Bioproducts and Biosystems


Biorefineries research group is led by Prof. Herbert Sixta. The group's research covers the entire value chain from the fractionation of the lignocellulosic biomass to valorization of the isolated biopolymers, with the aim of sustainably producing commodities analogous to fossil-based products.
CHEM_Bio_Marianna_Granatier_From wood to fiber
Marianna Granatier, From wood to fiber

Research themes:

1. Biomass fractionation - chemical pulping refineries and novel fractionation processes:

We investigate radically new energy and resource efficient production technologiesfor chemical pulping, e.g. Kraft-Oxygen Delignification (KrOxy) process and new dissolving pulp technologies.In addition, our research group develops novel biomass fractionation processes based on the utilization of Biomass valorisationsupercritical water and green solvents, e.g. gamma-valerolactone (GVL).


2. Biomass valorisation:

Cellulose: We study conversion of cellulose e.g. into man-made cellulose fibers and all-cellulose composites.

Hemicelluloses: Our research topics include the valorisation of xylan from alkaline extractions, production of xylo-oligosaccharides and catalytic conversion of biomass-derived sugars into furans.

Lignin: Lignin is an interesting biomass component which can be converted into valuable products such as bio-oil. Lignin-cellulose blends can be used e.g. as precursor fibers for carbon fibers, or as natural dye in textiles.

Our versatile reactor portfolio enables flexible pulping experiments from small lab-scale (30 mL) to pilot scale (10 L), including both traditional (prehydrolysis) kraft and novel Organosolv processes. Elemental-Chlorine-Free (ECF) and Total-Chlorine-Free (TCF) bleaching techniques are readily available.

Our flagship research in biomass valorization is the production of novel man-made cellulose fibers for the circular economy by the dry-jet-wet spinning Ioncell® process, which convert cellulose from virgin wood pulp or cellulosic textile waste into high-quality, high-strength textile fibers. In addition, our research group is equipped with fiber characterization equipment and yarn spinning machinery. We also investigate in the conversion of extracted hemicelluloses and lignin to high value products such as furanic platform chemicals, monoaromatic compounds and bio-oil. Our lab developed advanced chromatography methods (HPLC, CE, IC, GPC) for comprehensive analysis of complex product mixtures.


Examples of ongoing research projects:

  • Trash-2-Cash (EU Horizon 2020)
  • SolvRec (Business Finland)
  • iCom (Business Finland)
  • ALL-CELL (FiDiPro, Prof. Tatiana Budtova)
  • WoCaFi (ERC starting grant, Dr. Michael Hummel)
  • Tekide (ERDF)

ALL-CELL: From ultra-light to ultra-strong all-cellulose composites via green processing

Finland Distinguished Professor grant awarded to Prof. Tatiana Budtova (Center for Materials Forming of MINES ParisTech, France). The goal of the 4-year project (started 2016) is to imagine, prepare and characterize new fully bio-based materials, all-cellulose composites.

Read more
Feng Chen, Tatiana Budtova and Oona Korhonen - ALL-CELL team. Photo by Eveliina Jutila
Aalto University / Ioncell logo


Ioncell-F is a technology that turns used textiles, pulp or even old newspapers into new textile fibers sustainably and without harmful chemicals. The process converts cellulose into fibers which in turn can be made into long-lasting fabrics.

Read more about the Ioncell process and our projects at!

Twitter: @IoncellFibers


The Ioncell-F process was granted the Global Change Award 2016 by the H&M Conscious Foundation, the Paper Recycling Award 2015 of the European Recovered Paper Council (ERPC), and the DIA Innovation Award 2018.

Ioncell fibers:

President Sauli Niinistö and Jenni Haukio at 2018 Finnish Independence Day reception. Photo: Vesa Moilanen/Lehtikuva

Mrs. Jenni Haukio’s gala dress in the Independence Day Reception 6.12.2018; photo: Vesa Moilanen, Lehtikuva. Textile design: Helmi Liikanen (ARTS), dress design: Emma Saarnio (ARTS)

CHEM_Bio_Ioncell_from jeans to scarf

A scarf made of Ioncell® fibers from recycled waste cotton and given to president Macron

CHEM_Bio_IOncell Marimekko dress

Marimekko’s Unikko dress. It was produced form Ioncell®/Tencel™ blend woven fabric. Photo: Sebastian Johansson, dress design: Riikka Buri, Marimekko

CHEM_Bio_Ioncell dress group

The Ioncell dress group

γ-valerolactone biorefinery

γ-valerolactone pulping is a novel organic solvent fractionation process developed by Professor Herbert Sixta’s Biorefineries research group.

Read more
GVL biorefinery Photo: Aalto University / Anni Hanén
CHEM_Bio_Herbert Sixta

We urge not only for investment in pulping research, but also for the commitment of young researchers.Together we make pulping great again!

Herbert Sixta, head of the research group
Ioncell thread on four different colors

The textile industry needs sustainable fibers produced from renewable or recycled sources, which can be recycled at the end of their life and which do not produce micro-plastics.  The demand for textile fibers is growing due to population growth and living standards. Currently, most textile fibers are synthetic, e.g. polyester, and are made from non-renewable sources. Cotton cultivation causes environmental problems due to the high consumption of irrigation water, pesticides and fertilizers. When textiles made of synthetic fibres are washed and worn, small fragments are released, causing microplastic contamination.

Aalto University offers the opportunity to study the raw material chemistry and process engineering necessary for the development of a sustainable textile industry, thereby combining materials research with textile and fashion design.

Production of commodities from biomass is the most viable option in the foreseeable future to mitigate the climate changes.

The raw materials of novel man-made cellulose fibers that we are developing in our research group are virgin pulp and recycled cotton waste. Cellulose pulp is made from smaller trees, and thinning stimulates the growth of remaining trees, thereby increasing carbons storage. When pulp is used for long-lasting products like textiles, the carbon is stored in the product. The recycling of cellulosic textiles even prolongs the carbon sink

CHEM_Bio_Biorefineries group

Related content:

Fibre made from recycled cloth towels and hemp stronger than cotton

The tensile strength of fibres created with the Ioncell method is up to 2.5 times more than that of cotton, while an Ioncell knitted fabric made from recycled hemp withstands abrasion for twice as long as normal hemp fabric.

Ioncell-kuituja kierrätysmateriaalista

Solving the systemic challenges in textile and fashion industry

We need systemic and fundamental changes in the textile and fashion industry’s business model, including a deceleration of manufacturing and the introduction of sustainable practices throughout the supply chain; decreasing clothing purchases and increasing garment lifetimes.

We need systemic and fundamental changes in the textile and fashion industry’s business model.

Take Finland’s lead and choose clothes you don’t have to feel guilty about

An Aalto University-designed and -produced dress made of birch trees shows how one day we will all look—and feel—good in sustainable fabrics

Haukio and Niinistö. Photo: Vesa Moilanen/Lehtikuva

Jenni Haukio to wear gown made of sustainable Ioncell material at December’s Independence Day reception

Ioncell is a new technology that creates high-quality textile fibres from wood or recycled materials.

Aikaisempi Ioncell-lankoja

President Macron received a scarf made from old jeans with Ioncell-F technology

The sustainable textile process was introduced to the President during his visit to Aalto University on 30 August 2018.

Professor Herbert Sixta presented Marimekko fabric made with Ioncell-F technology to President Macron, Finland’s Prime Minister Juha Sipilä and Aalto University President Ilkka Niemelä. Photo: Aalto University/Mikko Raskinen

”Koivikko” scarf paving way for new textile fibres made out of renewable and traceable birch

Professor Herbert Sixta donated an Ioncell scarf to Sirpa Välimaa, Product Manager Dissolving Pulp, Stora Enso Oyj, in PulPaper Conference on 31 May in Helsinki.

Professor Herbert Sixta and Sirpa Välimaa. The scarf was donated to Sirpa Välimaa as an expression of gratitude for Stora Enso's great support for Ioncell process over many years. Photo: Sofi Vuojakoski

High performance man-made cellulosic fibres from old newspapers

Increasing consumption requires new ways to recycle waste. In Aalto University old newspapers were converted to textile.

Upcycling ‘fast fashion’ to reduce waste and pollution

Aalto’s Ioncell team presents their work at a meeting of the American Chemical Society.

Fibres from textile waste to be turned into new attractive consumer products

Trash textiles are a valuable resource that should not be left untapped. Aalto and VTT are participating in an EU project called Trash-2-Cash.

Awarded method makes textile fibre from waste cotton

A greener textile industry requires expertise in chemistry, design and economy, stresses Herbert Sixta who leads the development of Ioncell-F.

A process revolutionising cotton recycling wins the H&M Global Change Award

The Ioncell-F™ process adapted for the conversion of waste-cotton into new textile was awarded as one of five winners among 2,700 proposals.

Luxury fibre from recycled cardboard

Prize-winning spinning method can reduce the environmental hazards of textile production.

Ioncell kierrätyspahvista

Latest publications:

The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performance

Mindaugas Bulota, Simona Sriubaite, Anne Michud, Kaarlo Nieminen, Mark Hughes, Herbert Sixta, Michael Hummel 2021 Journal of Applied Polymer Science

Understanding the influence of key parameters on the stabilisation of cellulose-lignin composite fibres

Nguyen Duc Le, Mikaela Trogen, Yibo Ma, Russell J. Varley, Michael Hummel, Nolene Byrne 2021 Cellulose

Layer-by-layer assembly of polystyrene/Ag for a highly reproducible SERS substrate and its use for the detection of food contaminants

Sihan Zhang, Zhihua Xu, Jiaqi Guo, Haiying Wang, Yibo Ma, Xianming Kong, Hongtao Fan, Qian Yu 2021 Polymers

Fabrication and application of sers-active cellulose fibers regenerated from waste resource

Shengjun Wang, Jiaqi Guo, Yibo Ma, Alan X. Wang, Xianming Kong, Qian Yu 2021 Polymers

Cellulose dissolution in aqueous NaOH–ZnO : cellulose reactivity and the role of ZnO

Saija Väisänen, Rubina Ajdary, Michael Altgen, Kaarlo Nieminen, Kavindra K. Kesari, Janne Ruokolainen, Orlando J. Rojas, Tapani Vuorinen 2021 Cellulose

Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 – Manufacturing and properties of precursor fibres

Mikaela Trogen, Nguyen Duc Le, Daisuke Sawada, Chamseddine Guizani, Tainise Vergara Lourençon, Leena Pitkänen, Herbert Sixta, Riddhi Shah, Hugh O'Neill, Mikhail Balakshin, Nolene Byrne, Michael Hummel 2021 Carbohydrate Polymers

Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysis

Panagiotis Spiliopoulos, Stefan Spirk, Timo Pääkkönen, Mira Viljanen, Kirsi Svedström, Leena Pitkänen, Muhammad Awais, Eero Kontturi 2021 Biomacromolecules

Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scattering

Daisuke Sawada, Yoshiharu Nishiyama, Thomas Röder, Lionel Porcar, Hilda Zahra, Mikaela Trogen, Herbert Sixta, Michael Hummel 2021 Polymer

Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing

Mahdi Rafiee, Roozbeh Abidnejad, Anton Ranta, Krishna Ojha, Alp Karakoç, Jouni Paltakari 2021 AIMS Materials Science
More information on our research in the Research database.
Research database
  • Published:
  • Updated:
URL copied!