News

What should decision-makers know about green hydrogen?

There’s been a great deal of discussion about the potential of green hydrogen to solve the global sustainability crisis. How can it help make the world a better place, and how can Finland encourage its development and uptake? We’ve compiled a concise information package on green hydrogen for decision-makers.
Vihreitä lehtiä ajelehtii vedessä (kuvituskuva)
Green hydrogen is hydrogen produced from water using renewable energy, such as solar and wind power. Photo: Adolfo Vera / Aalto University

1. Green hydrogen is a huge investment opportunity for Finland

The EU has a set target of meeting one-fifth of Member States’ energy needs with green or low-carbon hydrogen by the year 2050. Finland is in a strong position in this regard because it has abundant water resources and significant wind power potential that could be used to cleanly produce hydrogen.

A total of 23 green hydrogen projects with an estimated combined value of EUR 10 billion are already being planned in Finland. In fact, the country aims to supply 10% of the green hydrogen used in the EU.

Green hydrogen might be one key to solving the sustainability crisis, because it could enable emissions-free transport and carbon-free steel production. However, decisions and investments are needed to support research and development in the renewable energy generation and storage before the hydrogen revolution becomes a reality.

2. Green hydrogen requires huge amounts of affordable renewable energy

Green hydrogen is hydrogen produced from water using renewable energy, such as solar and wind power. This means that it needs affordable and plentiful renewable energy. Onshore wind power is already the most cost-effective form of electricity generation in Finland, and it currently supplies more than 10% of electricity consumption in the country. That figure is expected to exceed 50% by 2050, partially with a boost from green hydrogen production.

In climate terms, hydrogen is an ideal fuel because water vapour is the only by-product it produces when burned for energy. Hydrogen is needed to refine oil and produce fertilisers. So far, most hydrogen has been produced from natural gas. This process (known as grey hydrogen production) releases as much carbon into the atmosphere as the combined annual emissions of the United Kingdom and Indonesia. Changing how hydrogen is produced is therefore vital for solving the sustainability crisis.

3. To realise the hydrogen revolution, we need to ensure the supply of precious metals

Green hydrogen production requires an electrolyser, a device in which catalysts help electrical energy to split water into hydrogen and oxygen. Traditionally, platinum and precious metals have been used as catalysts. However, these metals are in increasingly short supply and could thus become extremely expensive. Furthermore, they are mostly produced in countries that may be unreliable suppliers to Europe and under conditions that could involve ethical problems.

A steady supply of precious metals must be ensured before hydrogen can offer a reliable solution to global energy challenges. Aalto’s Professor Tanja Kallio and her team are developing new methods to reduce the need for precious metals in green hydrogen production, as well as trying to make them last longer and replace them with more common materials.

4. Green hydrogen would dramatically reduce Finland’s emissions

Green hydrogen can help reduce emissions from modes of transport that are difficult to electrify, such as heavy road transport and maritime transport. Hydrogen can be used as a fuel itself or it can be combined with carbon dioxide to produce electrofuels, such as methane (an alternative to natural gas).

Green hydrogen will also play a key role in reducing emissions from the steel industry. Fossil-free steel can be produced by using green hydrogen as a replacement for coke, a derivative of coal traditionally used in iron ore reduction. The impact would be enormous: if the Raahe steel mill switched to green hydrogen, Finland’s carbon dioxide emissions would fall by seven percent. The steel mill planned for Inkoo, which is estimated to cost EUR 4 billion, is expected to use green hydrogen to produce fossil-free steel.

In addition to introducing new technologies and investing in renewable energy, we also need to learn how to live with less.

5. New technologies can only become real with investments in research and education

The past two decades have seen enormous progress in the field of hydrogen technology solutions. Antti Arasto, Vice President of Industrial Energy and Hydrogen at VTT, emphasises that the development of new technologies is the result of long and complex processes. “The chain from basic research to applied research, product development and investments in companies, and then to a shift in the whole world’s infrastructure, is tremendously long. The hydrogen revolution is a shining example of the fact that the whole pipeline needs to be invested in and that education really is worth the investment,” Arasto explains.

Alongside green hydrogen, universities are also working on other new technologies, such as fusion energy. It’s essential that we don’t put all our eggs in one basket when it comes to solutions to global energy problems, because no single solution could work everywhere.

Read more about green hydrogen and the energy transition

Kuvituskuva

The world’s lightest revolution

Green hydrogen promises to turn Europe into an energy heavyweight, make traffic emission-free and replace carbon in steel manufacturing. But can it actually deliver – and how?

News
abstract monochrome shapes and patterns with deep orange red tones overlaid with the exhibition title

Energy Futures: Critical minerals, climate neutrality and transition pathways

An exhibition on energy transitions and the challenges and solutions driving our response to the global energy crisis across research and industry.

Events
  • Published:
  • Updated:

Read more news

Dean's Impact Award, School of Business
Awards and Recognition Published:

The Dean also rewards School of Business students for other merits besides excellent grades

The aim of the new Dean’s Impact Award is to show our appreciation for promoting sustainable development or action in line with Aalto’s values
Lennart Engels, Karolin Kull, Ágnes László, Julia Postrzech and Valenti Soler won the Habitare Design competition 2023.
Awards and Recognition, Research & Art, Studies, University Published:

Team of Interior Architect and Contemporary Design students won the Habitare Design competition 2023

The Habitare Design Competition is intended for students studying art, design, and architecture in Finland. This year ‘s theme of the competition was “Tools for togetherness”, which required the teams to design and implement new types of tools to promote togetherness and interaction on a human scale or more widely.
The Fifth Wave - BRIE-ETLA Collection of Articles book cover
Research & Art Published:

Audiobooks can today be created with AI

The Department of Industrial Engineering and Management has published its first AI-based audiobook.
Värikkäitä ja läpinäkyviä pinnoitenäytteitä puupölkyn päällä.
Press releases, Research & Art Published:

Is wood brown, blue, yellow, or transparent? Researchers discovered ways to make transparent and colourful coatings from wood

Researchers have succeeded in developing new types of coatings from lignin in trees. The invention has many potential uses, for example in anti-fogging coatings, where it can replace highly toxic chemicals.