News

Researchers discovered new method for improving perovskite solar cell performance

With humidity assisted thermal treatment the overall efficiency increases almost 45 per cent.
A humidity assisted and thermal treated (HTE) carbon-based printed perovskite solar cell. Photo: Ghufran Hashmi.

The Aalto-developed treatment builds on previous breakthroughs improving the efficiency and longevity of perovskite solar cells using established printing methods (carbon back contact based perovskite solar cells or CPSCs). These findings make it possible to further enhance the efficiency of these types of solar cells.

Perovskite solar cells are solar cells where the light harvesting layer consists of lead halide with perovskite crystal structure. Globally, perovskite cells are studied intensively since they might prove to be an alternative to silicon cells that require a lot of energy in the manufacturing process.

In the new method, the perovskite solar cells were exposed to 40-degrees in a chamber where humidity was kept in the level of 70 per cent (±5 per cent). This kind of environment normally degrades the properties of perovskite solar cells. In this case, the treatment led to surprising growth of the perovskite crystals, which naturally absorb sunlight and generate electricity.

“The photovoltaic performance was significantly enhanced, and the overall efficiency increased almost 45 per cent,” says Dr Ghufran Hashmi, an Academy of Finland postdoctoral researcher.

“Ghufran Hashmi was interested in possible changes in the atomic structure of the perovskite solar cells. With the state-of-the-art X-ray diffractometer of the Nanomicroscopy Center at Aalto, we were able to monitor the crystallite structure of the perovskite layer before and after the treatment,” says Dr Ulla Vainio, a staff scientist in the Department of Applied Physics, who assisted Hashmi with collecting experimental data.

The team did not stop there, but examined the perovskites using a scanning electron microscopy (SEM). “The SEM images supported the previous observations obtained from the X-ray diffraction method analysis, which endorsed the gradual crystal growth over the period of exposure,” reports Dr Teemu Sarikka, a staff scientist in the Department of Mechanical Engineering.

The task of physics doctoral student Teemu Myllymäki was to check if any chemical changes occurred in the perovskite crystal structure induced by the moisture generated by the thermo-humid environment. In his research, Myllymäki utilized Fourier transform infrared spectroscopy (FTIR). “The comparison between the fresh and exposed solar cells revealed almost no change in the chemical structure of the perovskite light absorbing layer, which endorses the successful implementation of this new treatment method,” he reports.

Solar cells are part of the rapidly expanding area of next-generation, low-cost photovoltaic systems. The team at Aalto benefited from working with collaborators in Switzerland, the Solaronix company and the Swiss Federal Institute of Technology (EPFL) in Lausanne. “Solaronix provided the samples and EPFL researcher Dr Ibrahim Dar helped us in key processes that are critically required for the successful commercialization of this low cost solar cell technology,” says Dr Hashmi.

The results are reported in detail in Journal of Materials Chemistry A.
The research was mainly funded by the Academy of Finland.

The team from Aalto University involved in this research work with an HTE treated carbon based printed perovskite solar cell. From left to right: Teemu Myllymäki, Ghufran Hashmi, Ulla Vainio, Teemu Sarikka. Photo: Nonappa.

Research article: S. G. Hashmi, D. Martineau, M. I. Dar, T. T. T. Myllymäki, T. Sarikka, U. Vainio, S. M. Zakeeruddin ja M. Grätzel. High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. Journal of Materials Chemistry A. DOI: 10.1039/C7TA04132B.

Contact:
Dr Syed Ghufran Hashmi
Finnish Academy Postdoctoral Researcher
Aalto University, Dept. of Applied Physics
Tel. +358 45 119 9233
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Read more news

Woman touching a long-sleeved Marimekko Unikko shirt on display
Research & Art Published:

Lab-grown pigments and food by-products: The future of natural textile dyes

As the environmental impact of the fashion and textile industries becomes clearer, the demand and need for sustainable alternatives is growing. One international research group aims to replace toxic synthetic dyes with natural alternatives, ranging from plants to microbes to food waste.
Professori Monika Österberg.
Research & Art Published:

Professor Monika Österberg's team received funding for the development of bio-based packaging materials

The Finnish Research Impact Foundation funding given to Professor Monika Österberg's team will enable Aalto University and Kemira to explore the possibilities of developing fully bio-based packaging materials to reduce the use of plastics in the packaging industry.
designtalks_banner.jpg
Research & Art, University Published:

DesignTalks highlights the relevance of good design and how it benefits us all

Find all DesignTalks recordings here – they're available for everyone, offering an opportunity to easily explore the role and relevance of design in different contexts
people exploring the walk-in closet that provides solutions for a sustainable fashion and textiles future
Cooperation, Research & Art, University Published:

'Wardrobe of the future' – sustainable solutions for the fashion and textile industry

The exhibition is showcasing solutions from researchers and students on sustainable future for the fashion and textile industry.