News

Greenhouse gas emissions from permafrost area larger than earlier estimated

Plant roots in soil stimulate microbial decomposition, a mechanism called the priming effect. A recent study published in Nature Geoscience shows that the priming effect alone can cause emission of 40 billion tonnes carbon from permafrost by 2100.
Pohjoisen ikirouta-alueen vehreää kasvillisuutta. Kuva: Ive van Krunkelsven
Lush vegetation in the northern permafrost area. Photo by Ive van Krunkelsven

Permafrost is permanently frozen ground which is a huge store of the Earth’s carbon. It stores as much carbon as all the plants on Earth and the atmosphere combined. The surface of the permafrost thaws in summer, allowing plant and soil life to thrive. When microorganisms breathe, they emit greenhouse gases. Scientists have previously anticipated that rapidly rising temperatures will drive the emission of 50-100 billion tonnes permafrost carbon by 2100. On top of that, plant roots feed sugar to the microorganisms in the soil, which the microbes can use to break down more soil organic matter – the priming effect – resulting in even higher greenhouse gas emissions.

“We have known about the priming effect since the 1950’s, but we did not know whether or not this small-scale ecological interaction had a significant impact on the global carbon cycle”, says Research Scientist Frida Keuper from INRAE and Umeå University. She co-led the international research team with Assistant Professor Birgit Wild from Stockholm University.

priming
Mallin avulla tutkijat pystyivät arvioimaan priming-ilmiön vaikutuksia ikiroudan ekosysteemeihin sekä hiili-päästöihin koko 14 miljoonan neliökilometrin laajuisella arktisella ikirouta-alueella.

The team of researchers combined maps of plant activity and detail data on soil carbon content with an extensive literature survey on priming and plant root properties. Associate professor Matti Kummu together with Dr Mika Jalava from Aalto University were responsible in developing a spatially explicit model which combined all this information. The model was used to estimate the priming effect in permafrost ecosystems and its influence on greenhouse gas emissions over the entire arctic permafrost areas, covering circa 14 million squarekilometre.

“With the model we were able to, for the first time, estimate the priming effect on a large scale and identifying the priming hotspots. Further, the modelled results and identified uncertainties help other scientist in their ongoing research” says Kummu.

"These new findings demonstrate how important it is to consider small-scale ecological interactions, such as the priming effect, in global greenhouse gas emission modelling", Birgit Wild continues.

Publication:
Frida Keuper, Birgit Wild, Matti Kummu, Christian Beer, Gesche Blume-Werry, Sébastien Fontaine, Konstantin Gavazov, Norman Gentsch, Georg Guggenberger, Gustaf Hugelius, Mika Jalava, Charles Koven, Eveline J. Krab, Peter Kuhry, Sylvain Monteux, Andreas Richter, Tanvir Shahzad, James T. Weedon, Ellen Dorrepaal (2020) Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming, Nature Geoscience, issue and DOI-number

Read the article in Nature Geoscience

Matti Kummu

Matti Kummu

Associate professor
Built Environment
  • Published:
  • Updated:
Share
URL copied!

Related news

Taiteellinen kuva panssaroidusta superhydrofobisesta pinnasta, joka kestää iskuja ja hylkii nesteitä tehokkaasti. Kuva: Juha Juvonen.
Cooperation, Press releases, Research & Art Published:

New funding to commercialise high-tech liquid-repelling coatings

New funding to get damage-resistant, liquid-repelling surfaces out of the laboratory and onto solar panels, skis, and more
The computer game could help in the treatment of depression alongside therapy and drug treatment. Picture: Matias Palva’s research group, Aalto University.
Press releases Published:

Researchers developing computer game to treat depression

Playing a therapeutic action game can ease symptoms in patients with depression, and improve their cognitive performance
An electron microscope image of the device used to extract entangled electrons
Press releases Published:

Entangling electrons with heat

Entanglement is key for quantum computing and communications technology; Aalto researchers can now extract entangled electrons using heat
Ihminen tekemässä työtä laboratotiossa.
Press releases, Research & Art Published:

How to motivate people to comply voluntarily with necessary restrictions – 13 principles for effective COVID-19 related communication

Decision-makers and experts should support people's autonomy, competence and relatedness in their COVID-19 related communications with citizens.