News

Aalto Professors publish new neuroscience textbook

‘Brain Signals’ by Risto Ilmoniemi and Jukka Sarvas comprehensively reviews brain scanning techniques and the mathematics you need to analyse them
Brain Signals.

Brain Signals: Physics and Mathematics of MEG and EEG by Professor Risto Ilmoniemi and Professor Emeritus Jukka Sarvas has been published by MIT Press. The book deals with electroencephalography (EEG) and magnetoencephalography (MEG) – which are ways of imaging the electric activity of the brain – and the physics and mathematics used in the analysis of the measured signals. The book is useful for researchers and students of the neurosciences, as well as for medical physicists and product developers.

Between them, both Sarvas and Ilmoniemi have produced some of the most highly cited academic publications in the neurosciences.

They crossed paths in 1985 at the Low Temperature Laboratory of the Helsinki University of Technology, when Ilmoniemi presented his doctoral dissertation and Sarvas served as the opponent. Sarvas’s previous work had included the mathematical analysis of how electromagnetic methods are used in prospecting for ore. The same mathematical methods are now used in brain research.

 ‘The previous textbook of its kind was published in the 1990s and since then the field has developed tremendously with respect to equipment and software. Brain Signals is the first uniform work about EEG and MEG that has the foundations of physics and mathematics as its starting point.  Books that have previously been published have mainly been compilations involving several writers’, Jukka Sarvas says.

EEG devices are widely used in modern medicine. Practically every hospital—even small ones—has at least one.  The results from these devices are usually analyzed in very simple ways.

‘However, there are not many experts with enough understanding of the mathematics and physics behind the results to be able to evaluate the reliability of the results, or to choose the best method of analysis on a case-by-case basis. There is often little more than simple analysis done in clinical work; for example, data for epilepsy are usually only interpreted visually’, Risto Ilmoniemi says.

Laboratories that have the MEG method, which is more accurate than an EEG, but many times more expensive, number only about 200 worldwide. MEGIN, a company that got its start at Helsinki University of Technology—merged into Aalto University—is a market leader in its field: there is a Finnish device in more than 100 laboratories.

The book also describes a flagship project in quantum technology, headed by Professor Lauri Parkkonen, which is aimed at upgrading the MEG method with new sensor technology. These new sensors, optically-pumped magnetometers, can be placed directly on the scalp, allowing an array of such sensors to adapt to the size and shape of the head of the person being examined. This is beneficial both in fundamental research and in clinical applications, such as in localizing epileptogenic areas before surgery. These measurements can be as accurate as invasive measurements performed inside the skull.

Further information:

  • Published:
  • Updated:
Share
URL copied!

Read more news

Picture of Marika Tervahartiala and Kamyar Hasanzadeh after the event in front of the Hybrid Stage area.
Research & Art Published:

Perspectives on open data: Aalto Research Data Uncovered

Marika Tervahartiala and Kamyar Hasanzadeh took the stage to share their insights on opening geographic and visual data.
The Future-led Learning Podcast is hosted by Riikka Evans. Photograph: Janne Illman.
University Published:

"I'm more corageous." - Why co-teaching. Listen to a podcast

New season of Future-led learning podcast takes you to a very practical level of working with students. This season includes topical issues such as academic advising, inclusion, co-teaching and sustainability. Topic for the last episode of this season is co-teaching.
Research & Art Published:

Alternatives to fossil-based fibres – Helena Sederholm develops sustainable textiles

Today’s outdoor clothing mainly relies on oil-based fibres and chemicals that are harmful for the environment. In her doctoral research, Helena Sederholm develops environmentally friendly water-repellent textiles. She follows the example of nature.
New Update
Research & Art Published:

Important Update: ITICAT2023 Conference Now Goes Hybrid Mode + Extension of Early Bird Registration and Abstract Submission Deadline!

ITICAT2023 Conference Now Goes Hybrid Mode + Extension of Early Bird Registration and Abstract Submission Deadline