Talk by Prof. Tim Liedl: Lattices and devices assembled from DNA

Prof. Tim Liedl (Ludwig Maximilian University of Munich) will give a talk at the NBE Department on March 23rd.


Prof. Tim Liedl (Ludwig Maximilian University of Munich)

Date: Thu, 23rd of March 
Time: 16:00-16.45
Place: F336, Otakaari 3.

Abstract:  DNA has proven to be a molecule capable of programmable self-assembly in the past [1,2]. In recent years, DNA self-assembly has surpassed its early stages and today is routinely used for constructing functional two- and three-dimensional nanomachines and materials. 

By defining attachment sites for active components on DNA structures, our group has realised complex and nanometer-precise assemblies of biomolecules, organic fluorophores and inorganic nanoparticles [3]. However, the initial thrust catalyzing the rapid development of DNA nanotechnology has been to arrange periodic DNA frameworks to host guest molecules for crystal structure analysis. Despite enormous efforts and fundamental progress, placing guest molecules in designed DNA crystals remains a challenging goal. By adopting design principles of Ned Seeman and Chengde Mao [4], we are able to crystallise DNA origami structures that grow into three dimensional, micrometer-scale assemblies [5]. Silicification of these crystals leads to designer nanomaterials that withstand drying without structural deformation [6].  

Our very recent, yet unpublished, results demonstrate the assembly power of DNA into diamond-type lattices exhibiting structural color and thus our ability to fabricate functional devices and 3D materials that are designed on the molecular level while reaching macroscopic dimensions.


[1] P. W. K. Rothemund, Nature 440, 297–302 (2006)  

[2] N. C. Seeman, Annu. Rev. Biochem. 79, 12.1 (2010)  

[3] R. Schreiber et al. Nature Nanotechnology 9, 74-78 (2014)  

[4] J. Zheng et al. Nature 461, 74-77 (2009)

[5] T. Zhang et al., Adv. Mat. 30, 1800273 (2018)

[6] L. Nguyen et al. Angew. Chem. Int. Ed., 58, 912-916 (2019)

P.S. Prof. Liedl will also act as an opponent for Ashwin Natarajan's defense on 24th March 2023.

Public defence in Biomedical Engineering, M.Sc. Ashwin Natarajan

Title of the doctoral thesis: Nucleic Acid Nanostructures: Design, Reconfigurability, and Applications

Read more
Scheme showcasing the design, reconfigurability, and application of nucleic acid nanostructures. The design of RNA polyhedra structures is shown in the left half, the reconfigurable nature of DNA origami in the top right quadrant, and the application of DNA origami to study a DNA bending protein is shown in the bottom right quadrant.
  • Published:
  • Updated: