Department of Computer Science


Astroinformatics group conducts research on astrophysical objects, such as the Sun, other stars, accretion disks, and galaxies, using state-of-the-art numerical simulations and data-analysis techniques. These include simulation tools accelerated with graphics processing units, and data-analysis tools employing machine learning. Our goals include understanding, predicting, and mitigating the harmful effects from solar magnetic activity.
Astroinformatics figure forcing



Dr. Petri Käpylä, Mr. Oliver Järnefelt, Dr. Alexander Grigorevskiy, Dr. Miikka Väisälä, Dr. Jyri Lehtinen, Dr. Elizabeth Cole, Dr. Marjaana Lindborg, M.Sc. Anne Liljeström (URSA)


Astroinformatics research group news

ReSolve CoE (Astroinformatics research group) determined magnetic helicity spectrum
Department of Computer Science

The Sun shows signatures of turbulent dynamo action

Astroinformatics research group has determined magnetic helicity spectrum from the solar surface observations using the recently developed two-scale formalism.
Rotation-Activity relation in global convection simulations
Department of Computer Science

Rotation-Activity relation in global convection simulations

Stellar magnetic activity level and rotation are strongly connected. Astroinformatics research group studied the effect of increasing rotation rate on solar-like stars using magnetohydrodynamic simulations of stars with outer convective envelopes.

Ongoing projects

CSC Grand Challenge project VortexSpot (PI Maarit J. Käpylä)

ERC consolidator grant UniSDyn (grant holder Maarit J. Käpylä)

PRACE project INTERDYNS (PI Maarit J. Käpylä)

CSC Grand challenge project SNDYN (PI Frederick Gent)

Academy of Finland FIRI project EUCLID (Aalto-PI Maarit J. Käpylä)

Magnetic fields residing in the convection zone of a solar-like star modelled

Video description: With the aid of computer simulations, we can study how the subsurface magnetic fields are generated inside the stars. The key role is played by convective turbulence, added with large-scale plasma motions. These effects together induce magnetic fields that eventually cause all magnetic activity of stars.

The video has been produced by Petri Käpylä.

Latest publications

A Knee-Point in the Rotation-Activity Scaling of Late-type Stars with a Connection to Dynamo Transitions

Jyri J. Lehtinen, Maarit J. Käpylä, Nigul Olspert, Federico Spada 2021 Astrophysical Journal

Interaction of large- and small-scale dynamos in isotropic turbulent flows from GPU-accelerated simulations

Miikka Väisälä, Johannes Pekkilä, Maarit Käpylä, Matthias Rheinhardt, Hsien Shang, Ruben Krasnopolsky 2021 Astrophysical Journal



On the Physics and Algorithms of the Pencil Code

A. Brandenburg, Simon Candelaresi, Frederick Gent 2020 GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS

Modelling supernova-driven turbulence

F. A. Gent, M. M. Mac Low, M. J. Käpylä, G. R. Sarson, J. F. Hollins 2020 GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS

Hidden magnetic fields of young suns

O. Kochukhov, T. Hackman, J. J. Lehtinen, A. Wehrhahn 2020 Astronomy and Astrophysics

On the existence of shear-current effects in magnetized burgulence

Maarit J. Käpylä, Javier Álvarez Vizoso, Matthias Rheinhardt, Axel Brandenburg, Nishant K. Singh 2020 Astrophysical Journal

Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection

Petri J. Käpylä, Frederick A. Gent, Nigul Olspert, Maarit J. Käpylä, Axel Brandenburg 2020 GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS

Turbulent viscosity and magnetic Prandtl number from simulations of isotropically forced turbulence

P. J. Käpylä, M. Rheinhardt, A. Brandenburg, M. J. Käpylä 2020 Astronomy and Astrophysics
More information on our research in the Research database.
Research database


  • Published:
  • Updated:
URL copied!