Department of Bioproducts and Biosystems

Wood Material Science and Technology

The wood material science and technology group, led by assistant professor Lauri Rautkari, focuses on a variety of subjects ranging from developing thermal modification processes and improving the properties of wooden construction materials to microbiology and chemistry of wood and wood components. The task for this group is to develop new sustainable, environmentally friendly and diverse wood products with enhanced properties.

Our research areas:

  1. Fundamental research on water interactions of biomaterials

  2. Chemical imaging of biomaterials

  3. Wood modification


The aim of our research is to increase the understanding of wood material behavior and developing products and processes for wood industry. We are using state-of-art analyzing and characterization tools and equipment such as confocal Raman microscope, NIR hyperspectral camera, FTIR spectrometer, dynamic vapor sorption (DVS) apparatus and mechanical testing devices. We are able to use several reactors, ovens and other process equipment in our research tasks.

Research subjects:



Thermal and chemical modification of wood

We research the phenomena behind the changes in wood material due to different modification methods, such as thermal and chemical modification, e.g., innovative hot water modification process for solid wood, as well as developing novel analysis techniques to study water vapor sorption phenomena.

Surface modification of wood

We study wood modification by one-sided surface charring in order to create a durable, ecological and maintenance-free construction material for wall claddings and sidings, as well as for other purposes both indoors and outdoors.

Pine extractives and natural durability of wood

We investigate the ways in which pine wood extractives prevent the growth of wood decaying fungi and study how the fungi work to overcome the effects of those extractives.

Antibacterial properties of wood extracts

We study the antibacterial properties of wood components, such as extractives, lignin and VOC's especially in terms of pathogenic bacteria.

Chemical imaging of wood

We are applying confocal Raman microspectroscopy and chemometrics to analyze cellular level changes during wood decay and the distribution of chemical modification agents. We are also developing methods to study local changes in water vapor sorption in the wood cell wall in-situ.

Wood-based panels and lignin adhesives

We are developing environmentally bening, greener adhesives for the wood panel industry by utilizing the versatility of wood lignin.

Wood veneer and plywood properties

We aim to improve the properties of wood veneer by investigating the effect of drying parameters on the hydroxyl group accessibility and glueability of green birch veneers, as well as increase the fire-retardant properties of veneers for plywood production and investigate the impact of treatments on bondability and sorption behavior.

Ongoing research:

  • Recycling possibilities for wooden packaging waste and wood working industry by-products - RecycledWood (KiertoPuu; EU/ERDF 2019-2020)
  • Wood modification using pressurized hot water - HOTWOOD (Academy of Finland, 2017-2021)
  • Interactions of wood and water in the nanoscale - WooD2O (AoF 2018-2021)
  • Charred surface as a durable, sustainable façade material for the future of wood construction - CHARFACE (AoF 2019-2022)
  • Thermal modification of wood in aqueous media (EU/ERDF 2018-2020)
  • Several ongoing industrial projects (2014 -)
Demonstrating thermal modification of wood - photo: Olli Häkämies

The 4-year Academy of Finland funded project HotWood investigates what happens to the ultrastructure of wood, when it is modified in superheated water at high pressure. Find out more about this and other projects at metsä.fi!

CHEM_Prof Lauri Rautkari

Join us!

We are continuously looking for talented researchers (Aalto students, MSc thesis workers, doctoral students and postdocs).

For further information, contact Prof. Lauri Rautkari ([email protected])

CHEM_Bio_Wood material and technology group photo

Related content:

New Academy Projects to be launched in September

New Academy Projects funded by the Academy of Finland involve expertise from all six Aalto schools

Organ type of image with white "veins" and small bacteria dots in red background, original image by Valeria Azovskaya

Nearly 20 million euros for research

The Academy of Finland funding brings nine new posts as Academy Research Fellow, 15 new Postdoctoral Researchers and 24 new Academy Projects to Aalto University.

Four engineering scientists in pink t-shirts in front of an an engine

Anything but an ordinary greenhouse

A wood-structured windowless greenhouse consumes only half as much energy as a traditional glass greenhouse. In addition to producing food, Pasi Herranen’s invention could generate electricity and excess heat in the future.

Kuvassa Pasi Herranen, Orvokki Ihalainen ja Panu Miettinen

Wood Wonders exhibition showcases climate-friendly building concepts

If all the buildings constructed in Finland each year were made of wood, the amount of wood needed for their construction would grow back in ten hours.

Wood Wonders exhibition at Helsinki airport. Photo: Anne Kinnunen

Latest publications:

Quantitative prediction of moisture content distribution in acetylated wood using near-infrared hyperspectral imaging

Muhammad Awais, Michael Altgen, Mikko Mäkelä, Tiina Belt, Lauri Rautkari 2022 Journal of Materials Science

Review of the use of solid wood as an external cladding material in the built environment

Callum Hill, Maija Kymäläinen, Lauri Rautkari 2022 Journal of Materials Science

Effect of Moisture on Polymer Deconstruction in HCl Gas Hydrolysis of Wood

Tainise Lourençon, Michael Altgen, Timo Pääkkönen, Valentina Guccini, Paavo Penttilä, Eero Kontturi, Lauri Rautkari 2022 ACS Omega

Structural Analysis of Lignin-Based Furan Resin

Xuhai Zhu, Bardo Bruijnaers, Tainise V. Lourençon, Mikhail Balakshin 2022 Materials

Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels

Mamata Bhattarai, Paavo Penttilä, Luisa Barba, Braulio Macias-Rodriguez, Sami Hietala, Kirsi S. Mikkonen, Fabio Valoppi 2022 LWT

Bioinspired living coating system in service: evaluation of the wood protected with biofinish during one-year natural weathering

Faksawat Poohphajai, Jakub Sandak, Michael Sailer, Lauri Rautkari, Tiina Belt, Anna Sandak 2021 Coatings

Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles

Tao Zou, Nonappa Nonappa, Mohammad Khavani, Maisa Vuorte, Paavo Penttilä, Aleksi Zitting, Juan José Valle-Delgado, Anna Maria Elert, Dorothee Silbernagl, Mikhail Balakshin, Maria Sammalkorpi, Monika Österberg 2021 Journal of Physical Chemistry B

Deswelling of microfibril bundles in drying wood studied by small-angle neutron scattering and molecular dynamics

Aleksi Zitting, Antti Paajanen, Lauri Rautkari, Paavo A. Penttilä 2021 Cellulose

Cellulose dissolution in aqueous NaOH–ZnO : cellulose reactivity and the role of ZnO

Saija Väisänen, Rubina Ajdary, Michael Altgen, Kaarlo Nieminen, Kavindra K. Kesari, Janne Ruokolainen, Orlando J. Rojas, Tapani Vuorinen 2021 Cellulose

Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation

Tainise Vergara Lourencon, Gabriel G. de Lima, Carolina S. P. Ribeiro, Fabrício A. Hansel, Giselle M. Maciel, Krisle da Silva, Sheila M. B. Winnischofer, Graciela I. B. de Muniz, Washington L E Magalhães 2021 International Journal of Biological Macromolecules
More information on our research in the Research database.
Research database
  • Published:
  • Updated:
URL copied!