Wood Material Science

Our research areas:
- Wood-water interactions
- Chemical imaging of biomaterials
- Wood modification
- Wood products and properties

Wood-water interactions
Wood contains polar functional groups that attract water molecules from the surroundings. Absorbed water influences the performance of wood significantly (strength and stiffness, swelling, risk for deterioration by decay fungi). A better understanding of wood-water interactions will thus help in improving the performance of wood in the built environment.
Our group investigates the principles of how wood interacts with water molecules under different climatic conditions. We have developed several methods to study wood-water interactions in automated sorption balances. Besides traditional sorption isotherm measurements, we also specialize in quantifying accessible sorption sites in automated sorption balances using the deuterium exchange approach. We are also analyzing the link between moisture content changes and structural changes of the wood cell walls at the micro- and nanoscale using state-of-the art characterization tools such as confocal Raman microspectroscopy, or x-ray scattering techniques.
Related projects
WaterWood - Water vapour sorption behaviour of wood under load
WooD2O - Interactions of wood and water in the nanoscale (AoF 2018-2021)

Chemical imaging of biomaterials
As a natural material, wood and other cellulosic biomaterials often suffer from chemical heterogeneity in spatial dimensions. In our group, we are analyzing chemical heterogeneity at the macroscopic scale (several millimeters or more) and at the microscopic or cellular level (several micrometers or less). This is done by combining different chemical imaging tools, including confocal laser scanning microscopy, confocal Raman mapping and hyperspectral near infrared imaging. We are also focusing on applying chemometrics based on multivariate data analysis, which utilize the entire spectral range measured to find chemical differences in samples.
We have used these chemical imaging methods in several research topics, ranging from the distribution of heartwood extractives in Scots pine wood to the process-related variation in modification degree in acetylated or impregnation-treated woods.
Wood modification
Our native wood species typically do not have a sufficient durability in exterior applications and there are growing environmental concerns for the use of biocides for wood protection. An alternative approach is the modification with thermal, chemical, or other methods. The modified wood remains non-toxic during its service life and beyond and shows improved dimensional stability and decay resistance.
Our group investigates different wood modification treatments, ranging from thermal modification methods and hygrothermal densification to chemical and impregnation-based modification methods or surface treatments using wood charring and biofilm coatings. We investigate the fundamental modes of action in modified woods and develop new strategies to modify our native wood species efficiently. Our laboratories offer a range of analytical tools to study anatomical and chemical changes of the cell wall as well as the resulting wood properties.
Related projects
CHARFACE - Charred surface as a durable, sustainable façade material for the future of wood construction (AoF 2019-2022)
Hotwood - Wood Modification Using Hydrolysis
Wood modification using pressurized hot water
Charred wood modification - Kestävä puujulkisivu hiiltämällä
Modification of wood veneer (EU/ERDF, 2016-2018)
Developing the ThermoWood process and products (EU/ERDF 2015-2017)

Wood products and processes
Wood from sustainably managed forests is an excellent building material thanks to its high strength-to-weight ratio and its ability to store carbon over long periods. There is diversity of wooden products with different properties and applications, which range from solid wood products (i.e. cross-laminated timber and glued laminated timber) to veneer-based products (i.e. plywood and laminated veneer lumber) to particle- and fiber-based products (i.e. particle and fiber boards). Our group investigates the properties and behavior of wood-based materials, such as the distribution of heartwood extractives and its impact on biological durability, anti-bacterial effects of wood surfaces or the humidity-dependence of mechanical properties. We are also cooperating with industrial partners to optimize the manufacturing conditions, or to develop new processing concepts for a more efficient use of wood in the built environment. We have a strong expertise in the evaluating the wood bondability with different adhesive systems or the design of wood products for novel applications.
Related projects
VERYCOAT - Novel high-performance veneer products by effective drying and nano-coating
TREFORM - Towards more resilient food system in the face of uncertainty
VIS (vacuum insulation system) for wooden construction elements
KiertoPuu - Recycling possibilities for wooden packaging waste and wood working industry by-products - RecycledWood (EU/ERDF 2019-2020)
COLIAD - Colloidal lignin adhesives and coatings (Tekes 2016-2018)
Wood science teaching
We offer teaching related to wood material science, wood products and processes as well as life cycle analysis of wood products. We are continuously developing our teaching and recently focusing on high-quality online learning. Online learning enables us to provide teaching to a wider audience, including students from different fields in Aalto, students from other universities, as well as, life-wide-learners.
Find out more about our courses here.
To support learning we keep on developing new learning materials and videos, such as presented below. Even more videos can be found from this Youtube-channel:

Join us!
We are continuously looking for talented researchers (Aalto students, MSc thesis workers, doctoral students and postdocs).
For further information, contact Prof. Lauri Rautkari ([email protected])
Research group members:



Suvi Kyyrö
Sultan Md
Pasi Herranen
Tiina Belt
Faksawat Poohphajai
Callum Hill

Related content:
New Academy Projects to be launched in September
New Academy Projects funded by the Academy of Finland involve expertise from all six Aalto schools

Associate Professor Lauri Rautkari appointed as Deputy Head of the Department at Bio2
Associate Professor Lauri Rautkari has been appointed Deputy Head of the Department of Bioproducts and Biosystems at the School of Chemical Engineering as of 1.8.2023.

Nearly 20 million euros for research
The Academy of Finland funding brings nine new posts as Academy Research Fellow, 15 new Postdoctoral Researchers and 24 new Academy Projects to Aalto University.

Anything but an ordinary greenhouse
A wood-structured windowless greenhouse consumes only half as much energy as a traditional glass greenhouse. In addition to producing food, Pasi Herranen’s invention could generate electricity and excess heat in the future.

Wood Wonders exhibition showcases climate-friendly building concepts
If all the buildings constructed in Finland each year were made of wood, the amount of wood needed for their construction would grow back in ten hours.

New minor: Aalto Wood
For students in any field interested in wood!

Wood science teaching
Wood science is taught by the Department of Bioproducts and Bioprocesses.

Latest publications:
Chemical imaging to reveal the resin distribution in impregnation-treated wood at different spatial scales
Limits in reaching the anhydrous state of wood and cellulose
Urban vertical farming with a large wind power share and optimised electricity costs
Oleogels and reverse emulsions stabilized by acetylated Kraft lignins
Mesostructural changes in cellulose within wood cell wall upon hydrothermal treatment at 200 °C
Effect of pressurized hot water extraction on the resistance of Scots pine sapwood against mould fungi
Deaggregation of cellulose macrofibrils and its effect on bound water
Improving mechanical performance and functionality of birch veneer with mechano-enzymatic microfibrillated cellulose coating
Fungal colonisation on wood surfaces weathered at diverse climatic conditions
Preparation of Fully Bio-based Sound Absorbers from Waste Wood and Pulp Fibers by Foam Forming
- Published:
- Updated: