News

Breakthrough in photonics: data-transmitting light signal gets power boost from nanosized amplifier

An international team of researchers from Aalto University and Université Paris-Sud has significantly improved the propagation of data inside a microchip
John Rönn Micronova
The researchers utilized the exceptional facilities of Micronova Nanofabrication Cleanroom. Photo: Antti Matikainen

Light is a more energy efficient and faster way of transferring data than electricity. Until now, the rapid attenuation of light signals in microchips has prevented the use of light as a source of an information signal.

With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. In their study published in Nature Communications, the researchers show that signal attenuation can be significantly reduced when data is transferred inside a microchip, for example, from one processor to another.

‘Photonics, or light transfer that is already widely used in internet connections, is increasingly being used by microcircuit systems because light is a more energy efficient and faster way of transferring data than electricity. The increase in information also requires an increase in performance. Boosting performance through electronic methods is getting to be very difficult, which is why we’re looking towards photonics for answers,’ says doctoral candidate John Rönn.

Help from atomic layer deposition

The researchers made their breakthrough with the help of a Finnish invention: the atomic layer deposition method. According to the team, the method is ideal for processing various kinds of microcircuits, as it plays an important role in manufacturing today's microprocessors. 

So far, the atomic layer deposition method has been used mainly in electronic applications. However, the newly released study indicates that possible applications also exist in photonics. In the development of photonics, new components must also ideally work with electricity—that is, in electronics.

‘Silicon is a key material in electronics, and that’s why it’s also included in our light amplifiers together with the amplification element erbium,’ Rönn says.

‘Today's compound semiconductors, which are used, for instance, in LED technology, can also be used effectively in light amplification. That being said, most compound semiconductors are not compatible with silicon, which is a problem for mass production.’

The study showed that a light signal can be potentially boosted in all kinds of structures and that the structure of a microchip is not limited to a specific type. The results indicate that atomic layer deposition is a promising method for developing microchip photonic processes.

‘Our international collaboration made a breakthrough with one component: a nanosized amplifier. The amplification that we got was very significant. But we’ll still need more components before light can completely replace electricity in data transfer systems. The first possible applications are in nanolasers, and in sending and amplifying data,’ says Professor Zhipei Sun.

The study was published in the journal Nature Communications on 25 January.
Link to the article (nature.com)

Further information:

Doctoral candidate John Rönn
Aalto University, Department of Electronics and Nanoengineering
[email protected]

Professor Zhipei Sun
Aalto University, Department of Electronics and Nanoengineering
tel. +358 50 430 2820
[email protected]

  • Published:
  • Updated:

Read more news

On a table there are tools for plaster modelling
Press releases, Research & Art, Studies Published:

Handbook introduces the world of ceramics

The Ceramics Handbook guides the reader to working with clay through texts, images, illustrations, animations, and videos.
Smiling woman with glasses and long hair standing on the staircase and looking up at the camera
Awards and Recognition Published:

Mariana Salgado is the Alumn of the Year of the School of Arts, Design and Architecture

Service design expert speaks for the designers’ role in public policy creation and in helping strengthen participation.
Aalto Digital Creatives Batch 5 Kickoff iWing/Agrid/Aalto 12032024
Press releases Published:

14 ideas chosen to the Aalto Digital Creatives programme

Aalto University’s fifth pre-incubator programme was launched at the Aalto Startup Center on March 12th 2024.
The picture shows the School of Business Professor of Practice Iivo Vehviläinen in a forest.
Press releases, Research & Art Published:

Economist: A natural resource tax on hydropower would generate revenue and improve the state of the environment

A natural resource tax would be a way to distribute the costs of environmental protection so that they would not fall solely on electricity consumers