Base Styles/Icons/lock/open Created with Sketch.

Breakthrough in photonics: data-transmitting light signal gets power boost from nanosized amplifier

An international team of researchers from Aalto University and Université Paris-Sud has significantly improved the propagation of data inside a microchip
John Rönn Micronova
The researchers utilized the exceptional facilities of Micronova Nanofabrication Cleanroom. Photo: Antti Matikainen

Light is a more energy efficient and faster way of transferring data than electricity. Until now, the rapid attenuation of light signals in microchips has prevented the use of light as a source of an information signal.

With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. In their study published in Nature Communications, the researchers show that signal attenuation can be significantly reduced when data is transferred inside a microchip, for example, from one processor to another.

‘Photonics, or light transfer that is already widely used in internet connections, is increasingly being used by microcircuit systems because light is a more energy efficient and faster way of transferring data than electricity. The increase in information also requires an increase in performance. Boosting performance through electronic methods is getting to be very difficult, which is why we’re looking towards photonics for answers,’ says doctoral candidate John Rönn.

Help from atomic layer deposition

The researchers made their breakthrough with the help of a Finnish invention: the atomic layer deposition method. According to the team, the method is ideal for processing various kinds of microcircuits, as it plays an important role in manufacturing today's microprocessors. 

So far, the atomic layer deposition method has been used mainly in electronic applications. However, the newly released study indicates that possible applications also exist in photonics. In the development of photonics, new components must also ideally work with electricity—that is, in electronics.

‘Silicon is a key material in electronics, and that’s why it’s also included in our light amplifiers together with the amplification element erbium,’ Rönn says.

‘Today's compound semiconductors, which are used, for instance, in LED technology, can also be used effectively in light amplification. That being said, most compound semiconductors are not compatible with silicon, which is a problem for mass production.’

The study showed that a light signal can be potentially boosted in all kinds of structures and that the structure of a microchip is not limited to a specific type. The results indicate that atomic layer deposition is a promising method for developing microchip photonic processes.

‘Our international collaboration made a breakthrough with one component: a nanosized amplifier. The amplification that we got was very significant. But we’ll still need more components before light can completely replace electricity in data transfer systems. The first possible applications are in nanolasers, and in sending and amplifying data,’ says Professor Zhipei Sun.

The study was published in the journal Nature Communications on 25 January.
Link to the article (nature.com)

Further information:

Doctoral candidate John Rönn
Aalto University, Department of Electronics and Nanoengineering
[email protected]

Professor Zhipei Sun
Aalto University, Department of Electronics and Nanoengineering
tel. +358 50 430 2820
[email protected]

Related news

Crystal Garden. Kuva: Kalle Kataila.
Press releases Published:

A fairy dance takes over Kuunsilta: student art exhibition opened at the Espoo Cultural Centre

The exhibition was inspired by the students' own experiences and relationship with the environment, and adapted to fit into the Cultural Centre.
Kuva: Matti Ahlgren.
Press releases Published:

AirBnb for electric cars

New app coordinated by Aalto University and Forum Virium Helsinki makes life easier for eco-conscious drivers
Researchers Salmivaara and Kibler
Press releases, Research & Art Published:

What does entrepreneurship mean for sustainable development? 3 distinct things, according to EU policy

Mixed meanings may muddy take-aways for firms and national governments
Aalto BIZ portaikkotaidekilpailun voittaja IC-98 Kuva: Marko Oikarinen
Campus, Press releases, University Published:

IC-98 won the School of Business' building staircase invited art competition

The winning proposal creates a zone of silence from the busy staircase.
  • Published:
  • Updated:
Share
URL copied!