News

Understanding the nanostructure formation in block copolymer thin film

Recent publication of the Multifunctional Materials Design research group in ‘Nanoscale Advances’ journal
Novel yet simple dip-coating method for fabricating nanopatterned thin films. Image: Aalto University, Hoang M. Nguyen

The paper “Understanding nanodomain morphology formation in dip-coated PS-b-PEO thin films” was published in the September issue of Nanoscale Advances (Volume 3, Issue 17). 

The research work for the manuscript was conducted under the SUPER-WEAR project (Super-stretchable functionalized materials and fibers for third generation wearable technology) funded by the Academy of Finland and led by Prof. Jaana Vapaavuori.  

All experiments were performed by Hoang M. Nguyen, and the TEM analysis was done by Swarnalok De. The development of the theory was a joint effort of both Hoang M. Nguyen and Ariane V. Mader. 

Hoang M. Nguyen about the publication: "Block copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene-b-poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran–water solvent system. Notably, we have obtained a hexagonally packed BCP pattern with long-range order without the need for post-annealing processes."

Link to the publication: https://doi.org/10.1039/D1NA00263E 

Keywords: block copolymer, dip-coating, PS-b-PEO, self-assembly

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan
  • Published:
  • Updated:
Share
URL copied!

Read more news

Photo by Unto Rautio. School of Business interior, stairs from the ground floor to the 1st floor.
Research & Art Published:

SUMMER INTERNSHIPS AT THE FINANCE FACULTY

We are primarily looking for students majoring in Finance, but we also welcome applications from students with other quantitatively oriented backgrounds. Completion of a Bachelor’s thesis or other relevant experience is a plus.
Mustaa puuta
Research & Art Published:

Unlocking the Mysteries of Super Black Materials: A novel wood-based solution

In the ever-evolving world of science and technology, there are certain phenomena that continue to captivate the minds of scientists, artists, and the general public alike. One such phenomenon is the enigmatic world of super black materials.
A man in a white lab coat with blue gloves holds up a vial of clear liquid while standing in front of a large microscope.
Research & Art Published:

Medical innovation makes early cancer diagnostics cheaper, faster, easier

Aalto University researcher makes two-pronged improvement on microbubble technology
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, January 2024

Sign-up to be a tutor for new doctoral students as part of the Doctoral Orientation Days 15-16 January 2024!