News

Understanding the nanostructure formation in block copolymer thin film

Recent publication of the Multifunctional Materials Design research group in ‘Nanoscale Advances’ journal
Novel yet simple dip-coating method for fabricating nanopatterned thin films. Image: Aalto University, Hoang M. Nguyen

The paper “Understanding nanodomain morphology formation in dip-coated PS-b-PEO thin films” was published in the September issue of Nanoscale Advances (Volume 3, Issue 17). 

The research work for the manuscript was conducted under the SUPER-WEAR project (Super-stretchable functionalized materials and fibers for third generation wearable technology) funded by the Academy of Finland and led by Prof. Jaana Vapaavuori.  

All experiments were performed by Hoang M. Nguyen, and the TEM analysis was done by Swarnalok De. The development of the theory was a joint effort of both Hoang M. Nguyen and Ariane V. Mader. 

Hoang M. Nguyen about the publication: "Block copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene-b-poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran–water solvent system. Notably, we have obtained a hexagonally packed BCP pattern with long-range order without the need for post-annealing processes."

Link to the publication: https://doi.org/10.1039/D1NA00263E 

Keywords: block copolymer, dip-coating, PS-b-PEO, self-assembly

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan
  • Published:
  • Updated:

Read more news

Aaltocell Excellence
Research & Art Published:

Bio-based opacifiers offer solutions to cleaner environment

The CELLIGHT project, backed by approx. €1.3 million in funding from Business Finland, aims to develop cellulose-based alternatives to titanium dioxide (TiO2 ), a widely used whitener in paints, cosmetics, and coatings.
Metsähovi radio observatory
Cooperation Published:

The kick-off of the Astrophysics Centre for Multimessenger studies in Europe

ACME is an EU-funded project built by and for the astroparticle and the astronomy communities.
Peter Liljeroth
Press releases, Research & Art Published:

Major European funding for research into new quantum materials

New materials are hoped to become building blocks for yet unseen quantum devices
A woman with blonde hair stands with arm resting on a ledge with a grey background.
Appointments Published:

Physics professor: Nuclear simulations need powerful computers, and ‘Finland is at the forefront’

Andrea Sand leads the Nuclear Materials and Engineering research group – a large team of international researchers with funding resources and collaboration opportunities spanning the European continent.