News

Understanding the nanostructure formation in block copolymer thin film

Recent publication of the Multifunctional Materials Design research group in ‘Nanoscale Advances’ journal
Novel yet simple dip-coating method for fabricating nanopatterned thin films. Image: Aalto University, Hoang M. Nguyen

The paper “Understanding nanodomain morphology formation in dip-coated PS-b-PEO thin films” was published in the September issue of Nanoscale Advances (Volume 3, Issue 17). 

The research work for the manuscript was conducted under the SUPER-WEAR project (Super-stretchable functionalized materials and fibers for third generation wearable technology) funded by the Academy of Finland and led by Prof. Jaana Vapaavuori.  

All experiments were performed by Hoang M. Nguyen, and the TEM analysis was done by Swarnalok De. The development of the theory was a joint effort of both Hoang M. Nguyen and Ariane V. Mader. 

Hoang M. Nguyen about the publication: "Block copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene-b-poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran–water solvent system. Notably, we have obtained a hexagonally packed BCP pattern with long-range order without the need for post-annealing processes."

Link to the publication: https://doi.org/10.1039/D1NA00263E 

Keywords: block copolymer, dip-coating, PS-b-PEO, self-assembly

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan
  • Updated:
  • Published:
Share
URL copied!

Read more news

Two women standing side by side, one in a grey sweater and the other in a dark blazer with a white shirt.
Appointments Published:

Sara Hulkkonen and Johanna Wartio start as Data Agents at the School of ARTS

Aalto Open Research Network has new members, Sara Hulkkonen and Johanna Wartio. Their aim is to support data management practices at the School of ARTS.
Learning Centre graphics
Research & Art Published:

Learning Centre opening hours during Christmas and year-end holidays

Thank you for the past year and have a wonderful holiday season!
Three white, circular lace patterns on a black background, each with a unique geometric design.
Research & Art Published:

Smart textiles are reshaping our understanding of materials – and interspecies communication

The PAST-A-BOT research project, funded by the European Research Council (ERC), is developing soft, intelligent textiles that could one day function as rescue robots, sound-sensing agricultural fabrics, or assistive clothing. At the same time, the project aims to rethink the way we approach materials research.
A woman presenting her master's thesis on textile chemistry at Aalto University. A laptop and notes are on the table.
Research & Art Published:

Master’s student showcases efficient color stripping of cotton fabrics

On December 9, master’s thesis student Elsa Vuorenmaa from the Textile Chemistry Group presented the results of her research on color stripping of reactive-dyed cotton fabrics.