Towards zero-emission shipping with fuel cells

Fuel cell technology is the key to reducing global emissions from shipping. In fuel cell development, ABB offers Aalto University students an opportunity to influence the big future solutions.

Fuel cell technology based on the use of renewable hydrogen has been just around the corner for a long time. Now, there are major powers promoting its introduction, since, with climate change, all sectors of industry, and transport in particular, are making a shift to zero-emission solutions.

‘I believe that now is the moment when the fuel cell technology will make its breakthrough. After road traffic and hydrogen cars, shipping will come next, and there the powers are one order of magnitude higher,’ says Sami Kanerva, Doctor of Science, Electrical Engineering, and Aalto alumnus, who acts as Global Product Manager of fuel cell solutions at ABB Marine.

ABB is a pioneer in fuel cell technologies for shipping which, together with electric propulsion, is a significant challenger for diesel engines.

‘We are developing the efficiency, life span and cost-effectiveness of fuel cells. We are also investing in how fuel cells and hydrogen can be integrated into ships in such a manner that they can be operated safely with the ship's other systems.’

Need for new experts

The ABB-Aalto co-operation in fuel cell technologies begins with exercises, theses and joint research projects. An ABB specialist is currently working on a doctoral dissertation related to fuel cells at Aalto University.

‘We are making major investments in the development of fuel cell technologies, and, in future, we will need even more new experts from Aalto. We offer students a future career which gives them an opportunity to change the world. At ABB, young specialists are given a chance to deal with major issues very early on in their working careers.’

Alongside the transition to zero-emission shipping, fuel cells will bring about changes in ship design and construction. Traditionally, a large diesel engine that drives the propeller is placed in the middle of the ship, which also dictates many other design solutions.

‘In the future, large engines and exhaust gas boilers may no longer be needed in the middle of the ship. Instead, there may be several smaller power sources distributed around the ship supporting the electrical propulsion system. This adds many degrees of freedom to the design.’

Text: Marjukka Puolakka

Back to the main article

For further information, please contact:

  • Published:
  • Updated:
URL copied!

Read more news

Katri Kaupin CAPSTONE-kurssin loppuesitykset
Cooperation, Studies Published:

In the supply chain management CAPSTONE course students worked on future challenges

Students were able to solve real-life challenges, receiving support from the professor and company representatives
Aalto EIT Services - Javor
Cooperation Published:

Tapojärvi Innovation Challenge 2023 for Students (apply by 14 APR 2023)

This competition is ideal for any students concerned about making a positive difference for the environment
ISM_vierailuluento 2023
Cooperation, Studies Published:

Service design contributes to ensuring the quality and suitability of digital services

Principal University Lecturer Johanna Bragge invited her colleagues from the School of Science and School of Arts, Design and Architecture to deliver a guest lecture
Audience in smaller tables listening to senior university lecturer Leena Lankoski
Cooperation, University Published:

Aalto Alumni Strategy Circle shared insights on sustainability and strategy

Sustainability in strategy was discussed at the Aalto Alumni Strategy Circle’s second after work event on 8 March 2023.