News

Towards more efficient gene therapy by investigating interactions of polyelectrolytes

A recent thesis investigated the interactions of charged polymers in salt solution.

Charged polymers, or polyelectrolytes (PE), are versatile synthetic materials which are used in purification of water, among other things.  The most important polyelectrolyte occurring among nature's macromolecules is DNA, which contains the human genome.

Many important applications of PE's are based on complexes formed of oppositely charged polymers, which however are sensitive to the presence of additional microions in the solution.

Hanne Antila, a doctoral candidate at Aalto University, began to model the interactions of polyelectrolytes in salt solution via computer simulations. It was revealed that the micro-ions in the solution unzip the links between polyelectrolytes (PE), that is, they replace the PE-PE links with ion-PE links one at a time. Unravelling of the links is affected by the ratio of charge densities of polyelectrolytes.

'I found two mechanisms through which the attractive interaction between a positively charged polymer and a negatively charged polymer can be turned into a mutually repellent form in a salt solution', Hanne Antila explains.

Guidelines for designing DNA carrier molecules

In gene therapy, the negatively charged DNA is complexed and in this way packaged into a positively charged carrier molecule. A good carrier molecule provides a sufficient protection for DNA in its way to the cell. To allow the genetic code contained by the DNA to be read, the carrier, however, must be able to free the DNA within the cell.

'In my work, I demonstrated how to influence the stability of the complex by controlling the charge of the carrier molecule and the salt concentration. The results, therefore, will be beneficial for the design of carrier molecules', Antila continues.

The results will also help in the development of multilayer coatings composed of alternative layers of oppositely charged polyelectrolytes. The unzipping phenomenon observed helps to explain the effect of the salt concentration on the speed of multilayer growth and on the multilayer stability.

The multilayer structures can be utilised, among other things, on metal surfacing to achieve desired features such as antimicrobial properties.

The study was made at the Department of Chemistry, in the Novel Materials Via Self Assembly research group led by Maria Sammalkorpi .

Dissertation

The public examination of the doctoral dissertation of M.Sc. (Tech.) Hanne Antila will be held on Thursday, 18 February 2016 at noon at Aalto University School of Chemical Technology in Lecture hall Ke2, Kemistintie 1, Espoo.

Doctoral dissertation Simulations of Polyelectrolyte Interactions in Salt can be read here (aaltodoc.aalto.fi).

More information:
Hanne Antila
Tel. 0500 563 674
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Related news

Vice Deans of School of Business: Tomas Falk and Virpi Tuunainen
Appointments, Research & Art, Studies Published:

Virpi Tuunainen and Tomas Falk appointed Vice Deans of the School of Business

The positions will start on 1 August 2020, with a period of office of three years.
Kaksi HUSIn korkeaa rakennusta kuvattuna alhaalta
Research & Art, University Published:

Funding from the Academy of Finland for research projects in biosciences, health and society

The funding granted to Aalto's six Academy Projects and one clinical researcher post totals 2.3 million euros.
Henkilön käsi asettelemassa laboratoriovälinettä.
Research & Art Published:

Four corona-related projects received special funding from the Academy of Finland

The projects study the coronavirus, the pandemic and its effects on society. The total amount granted to the four Aalto projects is 730 000 euros.
MRI Scanning photo Adolfo Vera Aalto University
Press releases, Research & Art Published:

Researchers are developing a mobile MRI that could fit in a van instead of a lorry

The new technology will be a great boost for healthcare, especially in in hard to access emergency areas. There is also a lot of potential for use in the the wellness sector.