The reliability of material simulations put to test

Researchers show that new generations of quantum mechanical simulation codes agree better than earlier generations’. The study appears in Science.

Several international scientists  from over 30 universities and institutes teamed to investigate to what extent quantum simulations of material properties agree when they are performed by different researchers and with different software. Torbjörn Björkman from Åbo Akademi participated from Finland. Björkman has previously worked at COMP Centre of Excellende at Aalto University.

- A group of researchers compared the codes, and the results we got were more precise than in any other calculations before.

The possibility to produce identical results in independent yet identical researches is a corner stone of science. Only in this way science can identify ‘laws’, which lead to new insights and new technologies. However, several recent studies have pointed out that such reproducibility does not always come spontaneously. Even predictions by computer codes require caution, since the way in which theoretical models are implemented may affect simulation results.

The research team can now demonstrate that, although a few of the older methods clearly yield deviating results, predictions by recent codes are entirely equivalent. They also define a quality criterion that allows the verification of future software developments against their extensive database. New test data are continuously added to a publicly available website. The researchers involved hope that their work will contribute to higher standards for materials property simulations, and that it will facilitate the development of improved simulation codes and methods.

The researchers investigated 40 different methods to describe the influence of pressure in 71 different crystals. Due to the highly international composition of the team, discussions and collaboration were mainly conducted via online tools – similarly to the way people collaborate to write Wikipedia.

The reproducibility is a concern in any field of research that critically depends on computer simulations. For instance, in the study and design of materials there are several independent software packages available, based on quantum physics. They are moreover being used increasingly often in automated procedures with limited human supervision which increases the need for more reliable codes.

The article:

For more information:

Torbjörn Björkman
e-mail: [email protected]
Åbo Akademi, Physics/Department of Natural Sciences

  • Published:
  • Updated:
URL copied!

Related news

Research & Art Published:

Michael Ungeheuer’s paper accepted to be published in the Journal of Banking and Finance

Finance Assistant Professor Michael Ungeheuer’s paper has been accepted for publication in the Journal of Banking and Finance.
Image accompanying publication that resolves the structure of TCNE films on copper
Research & Art Published:

Deciphering the structure of nanosystems with machine learning

The CEST group joins forces with a team in Austria to solve a long-standing puzzle in nanoscience.
Scanning tunneling microscope tip confining electrons in graphene
Research & Art Published:

Stopping the unstoppable with atomic bricks

Aalto University theorist part of a team that developed a method for trapping elusive electrons
Aivokuori seuraa äänen piirteitä hyvin täsmällisesti ymmärtääkseen puhetta. Kuva: Aalto-yliopisto
Press releases, Research & Art Published:

The human brain tracks speech more closely in time than other sounds

The way that speech processing differs from the processing of other sounds has long been a major open question in human neuroscience.