News

Self-assembled nanostructures can be selectively controlled

DNA self-assembly allows the unprecedented control of the optical properties of plasmonic metamolecules.
Plasmonic metamolecules. Picture: Marco Tripodi.

Plasmonic nanoparticles exhibit properties based on their geometries and relative positions. Researchers have now developed an easy way to manipulate the optical properties of plasmonic nanostructures that strongly depend on their spatial arrangement.

The plasmonic nanoparticles can form clusters, plasmonic metamolecules, and then interact with each other. Changing the geometry of the nanoparticles can be used to control the properties of the metamolecules.

“The challenge is to make the structures change their geometry in a controlled way in response to external stimuli.  In this study, structures were programmed to modify their shape by altering the pH,” tells Assistant Professor Anton Kuzyk from Aalto University.

Utilization of programmable DNA locks

In this study plasmonic metamolecules were functionalized with pH-sensitive DNA locks. DNA locks can be easily programmed to operate at a specific pH range. Metamolecules can be either in a “locked” state at low pH or in relaxed state at high pH. Both states have very distinct optical responses. This in fact allows creating assemblies of several types of plasmonic metamolecules, with each type designed to switch at different a pH value.  

The ability to program nanostructures to perform a specific function only within a certain pH window could have applications in the field of nanomachines and smart nanomaterials with tailored optical functionalities.

This active control of plasmonic metamolecules is promising for the development of sensors, optical switches, transducers and phase shifters at different wavelengths. In the future, pH-responsive nanostructures could also be useful in the development of controlled drug delivery.

The study was carried out by Anton Kuzyk from Aalto University, Maximilian Urban and Na Liu from Max Planck Institute for Intelligent Systems and the Heidelberg University, and Andrea Idili and Francesco Ricci from the University of Rome Tor Vergata.

More information:

Anton Kuzyk
Assistant Professor
Aalto University
[email protected]
tel. +358 50 443 0492

Article: Selective control of reconfigurable chiral plasmonic metamolecules

  • Published:
  • Updated:
Share
URL copied!

Related news

An illustration showing a nano-strip of copper being bombarded by photons, with a thermometer measuring its heat
Press releases Published:

How sensitive can your quantum detector be?

A new device measures the tiniest energies in superconducting circuits, an essential step for quantum technology
A solar panel printed in the shape of the aalto 10th birthday party logo
Press releases Published:

Low cost solar panel research receives funding boost

€600,000 funding awarded to Dr Ghufran Hashmi for the development of low cost long-lasting solar energy materials
Kysy tutkijat -viikon tutkijat
Press releases Published:

Borrow a researcher for an hour – top digital experts offer free Skype conversations and coaching 10-14 February

Are you interested in artificial intelligence, platforms, circular economy or digital ethics? During the Call a Researcher week on 10-14 February, anyone has the opportunity to chat with researchers. Book your time now!
Aalto-yliopiston kampus
Press releases Published:

In ten years, Aalto University has created a world-class centre of expertise

Aalto University has brought together science, art, technology and business at the Otaniemi campus and is now one of the world's leading universities in these key areas. Aalto celebrates its 10th anniversary on Wednesday 8 January 2020.