News

Researchers observe new charge transport phenomenon

No fully corresponding phenomenon has been found in modern physics before.
Charge transport

Researchers of Aalto and the German University of Marburg have collaborated in the study of the movement of charges over interfaces of semiconductor materials. The group noticed a new kind of transport phenomenon for charges. In the phenomenon, a pair formed by a negative electron and a positive charge moves onto an interface, after which its 'message' is passed on to the other side of the interface, where it is carried on by a similar pair. The new theoretical result opens up interesting prospects for carrying out logical operations in electronics.

- In addition to microelectronics, transport phenomena of charges are in a key role in many biological processes, such as photosynthesis, explains Professor Ilkka Tittonen from Aalto University.

A very unique observation

In the tunnelling phenomenon a particle can, with certain likelihood, penetrate the thin interface between materials, even if it would be seen as impossible according to classical physics. The newly discovered phenomenon is not based on the tunnelling of individual charges, but rather on the dynamics of a pair made of an electron and a positive charge that is connected to it electrically. This bound pair composed of an electron and a positively charged hole is called an exciton.

- The observation is quite unique. Finally, an optical pulse functioning on a terahertz frequency brings information or the so-called correlation of the electron hole pair from one side of the interface to the other, without any tunnelling of the exciton itself. No phenomenon that would be fully equivalent to this has been found previously in the field of modern physics, Tittonen explains.

The phenomenon combines semiconductor and terahertz techniques and it allows a new kind of logical operation in microelectronics. The group believes that it will be possible, on the basis of the phenomenon, to design new kinds of processors which function partly through optics and partly through electricity.

The group published its observations in the publication Physical Review Letters on 16 March 2015.

The study took place at Aalto University School of Electrical Engineering in Finland, primarily by Osmo Vänskä, under the supervision of Professor Ilkka Tittonen and Professors Mackillo Kira and Stephan Koch.  Finnish funding for the study has come from Aalto University and the Academy of Finland. Professor Mackillo Kira serves as a visiting professor at Aalto University regularly every year.

LInk to article

Further information:
Professor Ilkka Tittonen
[email protected]
+358 40 5437 564

  • Published:
  • Updated:

Read more news

 Shankar Deka is an Assistant Professor at the Department of Electrical Engineering and Automation.
Research & Art Published:

Robotics needs safe behavior patterns

Robotics and autonomous systems are developing rapidly. Algorithms that withstand disturbances and uncertainties in the system model and environment are critical for development.
kuva puhelimesta ihmisen kädessä
Press releases Published:

Teaching a computer to type like a human

A new typing model simulates the typing process instead of just predicting words
Open-top chambers in a tundra environment.
Press releases Published:

Understanding climate warming impacts on carbon release from the tundra

Tundras could transform from carbon sinks into a carbon source, exacerbating the effects of climate change
People registration to SSD
Press releases Published:

Program now available for the sustainability event of the year - Speakers include economist Kate Raworth and president Tarja Halonen

This year, Sustainability Science Days, a joint event of Aalto University and the University of Helsinki is collaborating with the world's largest Sustainability Research and Innovation Congress SRI. The event will bring together 2,000 experts to solve global sustainability challenges.