News

Researchers observe new charge transport phenomenon

No fully corresponding phenomenon has been found in modern physics before.
Charge transport

Researchers of Aalto and the German University of Marburg have collaborated in the study of the movement of charges over interfaces of semiconductor materials. The group noticed a new kind of transport phenomenon for charges. In the phenomenon, a pair formed by a negative electron and a positive charge moves onto an interface, after which its 'message' is passed on to the other side of the interface, where it is carried on by a similar pair. The new theoretical result opens up interesting prospects for carrying out logical operations in electronics.

- In addition to microelectronics, transport phenomena of charges are in a key role in many biological processes, such as photosynthesis, explains Professor Ilkka Tittonen from Aalto University.

A very unique observation

In the tunnelling phenomenon a particle can, with certain likelihood, penetrate the thin interface between materials, even if it would be seen as impossible according to classical physics. The newly discovered phenomenon is not based on the tunnelling of individual charges, but rather on the dynamics of a pair made of an electron and a positive charge that is connected to it electrically. This bound pair composed of an electron and a positively charged hole is called an exciton.

- The observation is quite unique. Finally, an optical pulse functioning on a terahertz frequency brings information or the so-called correlation of the electron hole pair from one side of the interface to the other, without any tunnelling of the exciton itself. No phenomenon that would be fully equivalent to this has been found previously in the field of modern physics, Tittonen explains.

The phenomenon combines semiconductor and terahertz techniques and it allows a new kind of logical operation in microelectronics. The group believes that it will be possible, on the basis of the phenomenon, to design new kinds of processors which function partly through optics and partly through electricity.

The group published its observations in the publication Physical Review Letters on 16 March 2015.

The study took place at Aalto University School of Electrical Engineering in Finland, primarily by Osmo Vänskä, under the supervision of Professor Ilkka Tittonen and Professors Mackillo Kira and Stephan Koch.  Finnish funding for the study has come from Aalto University and the Academy of Finland. Professor Mackillo Kira serves as a visiting professor at Aalto University regularly every year.

LInk to article

Further information:
Professor Ilkka Tittonen
[email protected]
+358 40 5437 564

  • Published:
  • Updated:
Share
URL copied!

Read more news

Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Press releases Published:

New imaging technique to find out what happens in the brains of cats and dogs

A brain imaging device based on quantum optical sensors could also be used to study the brains of human babies
Kuvaa laitteittosta Aalto-yliopsiton Kylmälaboratoriossa.
Press releases Published:

Perpetual motion is possible – Scientists at Aalto University’s Low Temperature Lab observed the interaction of two time-crystals that bend the laws of physics

Time-crystals are a phase of matter in which the particles more in a perpetually repeating cycle with no external input of energy. Researchers were able to create two time-crystals at Aalto University’s Low Temperature Lab and observe their interaction. In the future, time-crystals might have applications in devices such as quantum computer memory components.
Valkoinen laboratoriotakki sekä analyysityökalu, jolla voidaan mitata veripisarasta särkylääkkeen pitoisuus.
Press releases Published:

Portable and quick analytics tool can revolutionise the pain killer diagnostics market

Fepod Oy Ltd, an Aalto University based start-up, has developed an analysis tool that allows healthcare professionals to measure the concentration of paracetamol, opioids and other painkillers real concentration in a single drop of blood.
Yhdistelmäkuva, jossa näkyy revontulia, Maa, mittauksia.
Press releases Published:

Suomi 100 did what could previously be done only by much larger satellites: photographing and studying the aurora borealis

Studying the aurora borealis area helps in the development of safe telecommunications, for example.