Uutiset

Tutkijat havaitsivat uuden varausten kuljetusilmiön

Ilmiötä voi soveltaa uudenlaisissa, osittain optisesti ja osittain sähköisesti, toimivissa prosessoreissa.

Aalto-yliopiston ja saksalaisen Marburgin yliopiston tutkijat ovat yhteistyössä tutkineet varausten liikkumista puolijohdemateriaalien rajapintojen yli ja havainneet uudenlaisen varausten kuljetusilmiön. Ilmiössä negatiivisen elektronin ja positiivisen varauksen muodostama pari siirtyy rajapinnalle, jonka jälkeen toinen samanlainen pari jatkaa ”viestiä” eteenpäin rajapinnan toisella puolella. Havainto avaa mielenkiintoisia mahdollisuuksia toteuttaa uudenlaisia loogisia operaatioita elektroniikassa. Tutkijat julkaisivat havaintonsa Physical Review Letters -lehdessä 16.3.2015.

– Mikroelektroniikan lisäksi varausten kuljetusilmiöt ovat avainroolissa myös useissa biologisissa prosesseissa, kuten fotosynteesissä, professori Ilkka Tittonen selventää.

 

Havainto hyvin ainutlaatuinen

Tunnelointi-ilmiössä hiukkanen voi tietyllä todennäköisyydellä läpäistä eri materiaalien välisen ohuen rajapinnan, vaikka se olisi klassisesti mahdotonta. Löydetty ilmiö ei perustu yksittäisten varausten kulkeutumiseen vaan elektronin ja siihen sähköisesti kytkeytyneen positiivisen varauksen muodostaman parin dynamiikkaan. Tätä elektronin ja positiivisesti varatun aukon muodostamaa sidottua paria kutsutaan eksitoniksi.

– Havainto on hyvin ainutlaatuinen. Lopulta terahertsitaajuudella toimiva optinen pulssi vie tiedon tai niin sanotun korrelaation elektroniaukkoparista rajapinnan puolelta toiselle ilman, että eksitoni itse tunneloituu, eli läpäisee rajapintoja. Modernin fysiikan alalla ei ole aikaisemmin löydetty täysin vastaavaa ilmiötä, Tittonen kuvailee.

Ilmiössä yhdistyvät puolijohde- ja terahertsitekniikat ja se mahdollistaa uudenlaisen loogisen toiminnallisuuden mikroelektroniikassa. Ryhmä uskoo, että ilmiöön perustuen on mahdollista suunnitella uudenlaisia prosessoreita, jotka toimivat osittain optisesti ja osittain sähköisesti.

Tutkimus on tehty Aalto-yliopiston sähkötekniikan korkeakoulussa pääosin Osmo Vänskän toimesta professori Ilkka Tittosen ja Marburgin yliopistossa professorien Mackillo Kiran ja Stephan Kochin johdolla. Tutkimusta ovat rahoittaneet Suomessa Aalto-yliopisto ja Suomen Akatemia. Professori Mackillo Kira toimii vuosittain vierailevana professorina Aalto-yliopistossa.

Linkki artikkeliin

Lisätietoa:
Professori Ilkka Tittonen
Aalto-yliopiston sähkötekniikan korkeakoulu
[email protected]
puh. 040 543 7564

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Image depicts a white wall with the words IV Konehuone OLO sprayed on it in red, referring that the engine room for AC is that way.
Kampus, Mediatiedotteet, Yliopisto Julkaistu:

Aalto-yliopisto julkistaa kilpailut rakenteilla olevan korttelin taideteoksista

Kilpailuilla haetaan teoksia rakenteilla olevaan Aalto Works -kortteliin.
Elisa Mekler
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Merkittävä EU-rahoitus Aaltoon – uusi projekti valjastaa psykologian teoriat pelikehityksen hyödyksi

Psykologian tutkimus tarjoaa pelikehittäjille arvokasta tietoa pelaamisen motivaatiosta ja vaikutuksista – jos tutkimusta osataan hyödyntää oikein.
Nanolaser kytkettynä päälle (ylhäällä) ja pois päältä (alhaalla) ulkoisen magneettikentän avulla.
Mediatiedotteet Julkaistu:

Fyysikot oppivat hallitsemaan nanolasereita etäältä magneettikentän avulla

Ilmiön salaisuus on poikkeuksellisessa materiaalissa ja sopivasti järjestetyissä nanopartikkeleissa. Tutkimus voi osoittaa tien kohti ennennäkemättömän vakaata signaalinkäsittelyä.

The apparatus consisted of a micron-scale aluminium superconductor separated from a normal conductor – metallic copper – by a thin insulating layer. When Cooper pairs in the superconductor broke, the quasiparticles would tunnel through the insulation to the copper, where the researchers observed them with a charge detector. Picture: Aalto University.
Mediatiedotteet Julkaistu:

Tutkijat todistivat kvanttitietokonetta häiritsevien kvasihiukkasten katoamisen

Aalto-yliopiston tutkijat havainnoivat yhdessä Lundin yliopiston ja VTT:n tutkijoiden kanssa reaaliaikaisesti pienellä alumiinisaarekkeella olevien kvasihiukkasten määrää. Tutkijat pystyivät varausilmaisimen avulla tarkkailemaan, miten Cooperin parien hajoamisesta syntyvät parittomat elektronit tunneloituivat eli karkasivat yksi kerrallaan pois alumiinisaarekkeelta noin sadan mikrosekunnin kuluessa.