Researchers discover unconventional superconductivity in a monolayer van der Waals material

The group discovered nodal superconductivity with hidden order fluctuations
A 6-point, stare-like structure represents nodal superconductivity in a van der Waals monolayer.

Researchers at Aalto University observed an exotic superconducting phase in a monolayer van der Waals material. Their paper, titled “Evidence of Nodal Superconductivity in Monolayer 1H-TaS2 with Hidden Order Fluctuations,” was featured on the back cover of the latest issues of the Advanced Materials journal on November 9, 2023.

Since its discovery in 1911, superconductivity is one of the most widely studied phenomena in experimental condensed matter physics. Among the wide variety of materials displaying this phenomena, unconventional superconductors have puzzled physicists over last few decades. 

Moreover, the research in quantum materials has observed a paradigm shift since the discovery of graphene, which has ignited interest in other two-dimensional van der Waals materials. In the case of this finding, the researchers were able to converge the two subjects of two-dimensional materials and unconventional superconductivity. 

Utilizing scanning tunnelling microscopes (STM) at OtaNano’s Nanomicroscopy Center, the group observed superconducting behavior consistent with a six-fold nodal pairing.

“We grew an atomically clean layer of 1H-TaSon graphite using a state-of-the art technique called molecular beam epitaxy,” says Research Fellow Somesh Ganguli, joint first author of the paper. “Below the temperature of 1 Kelvin, we observed superconductivity in the system, characterized by a spectral gap incompatible with a Bardeen–Cooper–Schrieffer (BCS) gap indicating the unconventional nature of the superconductivity.’’  

The experiments also uncovered the presence of many-body excitations around the superconducting gap. 

“These excitations might be related to hidden order fluctuations, and they can aid our fundamental understanding of pairing glue in unconventional superconductors,” says Assistant Professor Jose Lado.

This discovery adds a building block to the 2D material toolbox that can be used for realizing designer heterostructures with completely new electronic properties. 

“For example, it can lead to future electronic devices with potential applications in quantum technologies,” says Professor Peter Liljeroth.

Researchers involved in the paper come from Aalto University’s Atomic Scale Physics research group, headed Liljeroth, as well as the Correlated Quantum Materials group, headed by Lado. 

The experiments utilized equipment from the Nanomicroscopy Center (NMC) at OtaNano. The NMC hosts high-resolution electron microscopy, scanning probe microscopy, and X-ray scattering instruments for soft, hard, and biomaterial sample imaging and characterisation. OtaNano is Finland’s national research infrastructure, comprising Micronova, NMC, and the Low Temperature Lab.

group photo

Atomic Scale Physics

We focus on the experimental study of nanostructures, where the precise nature and location of every atom matters.

Department of Applied Physics

Correlated Quantum Materials (CQM)

Correlated Quantum Materials Group (CQM)

Department of Applied Physics
Kvanttibitit. Kuva: Jan Goetz.


OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

  • Published:
  • Updated:
URL copied!

Read more news

Unite! White paper - a new university open science and innovation governance model and policy for a sustainable world
Cooperation, University Published:

Unite!’s pathway for the management of open science and innovation in the European Universities Alliances

Unite! presents a new university open science and innovation governance model and five policy recommendations.
The magnetic properties of a material can affect how it interacts with light.
Press releases, Research & Art Published:

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
Mikko Alava ja kolme muuta tutkimusryhmän jäsentä kuvattuna teknisen laitteen äärellä.
Research & Art Published:

Significant grants for science from the Finnish Cultural Foundation

A total of thirty individuals and research groups from Aalto University received grants from the Finnish Cultural Foundation for science and art. Professors Harri Lipsanen and Zhipei Sun and their team, were awarded a large grant to develop electronic components mimicking the structure and function of the human brain. Among the grantees is also Professor Mikko Alava, whose team is developing water-resistant foams as substitutes for plastic using AI-based methods.
An illustration of planting a tree on a grave and the tree's growth
Awards and Recognition Published:

Landscape architect Anu Hakola receives Lappset prize

Hakola’s Master’s thesis examines memorial trees and their significance as part of the commemoration of the deceased.