Reprogramming the shape of virus capsids could advance biomedicine

Proteins that encapsulate viruses can be moulded into defined shapes using DNA and RNA origami nanostructures.
DNA origami nanostructures
DNA origami nanostructures (blue) can be used to program the shape of virus particles (grey). The native capsid with a diameter of 28 nanometres is shown in green-grey. Image: Mauri A. Kostiainen/Aalto University

Bioengineers have found a way to program the size and shape of virus particles by combining viral protein building blocks and templates made from DNA. The resulting nanostructures could have applications in vaccine development and transporting drugs inside the body.

Virus capsid proteins—the proteins that shield the genome of a virus—can be used to build precisely structured protein assemblies. Their shapes and geometry, however, depend largely on the virus strain. Reprogramming these assemblies, no matter the original viral blueprint, is an intriguing possibility for drug delivery and vaccine development.

Scientists tackled the challenge by generating a “structured genome” template on which capsid proteins can assemble. To avoid deforming the flexible genome and creating unintended shapes, they used rigid DNA origami structures. These structures are only tens to hundreds of nanometres in length, but entirely made of DNA, which is folded accurately into the desired template shape.

‘Our approach is based on electrostatic interactions between the negative charge of the DNA nanostructures and a positively charged domain of the capsid proteins, paired with intrinsic interactions between the single proteins. By altering the amount of protein used, we can fine-tune the number of highly-ordered protein layers, which encapsulate the DNA origami,’ says Iris Seitz, lead author and doctoral researcher at Aalto University.

‘By using DNA origami as a template, we can direct the capsid proteins into a user-defined size and shape, resulting in assemblies which are well-defined, both in length and diameter. By testing a variety of DNA origami structures, we also learned how the templates’ geometry affected the whole assembly,’ Seitz adds.

‘With the help of cryogenic electron microscopy imaging, we were able to visualise the highly ordered proteins upon assembly and, with that, measure even small changes in the geometry of the assembly arising from different templates,’ explains professor Juha Huiskonen, a collaborating scientist from the University of Helsinki.

‘We have found a simple but effective strategy to (re)direct capsid proteins to a desired shape. Our approach is adaptable and therefore not limited to a single capsid protein type, as we demonstrated with capsid proteins from four different viruses. Additionally, we can tweak our template to be more application-relevant, for instance by integrating RNA into the origami, which could subsequently be translated into useful or site-specific proteins,’ explains Aalto professor Mauri Kostiainen, leader of the research project.

Although DNA origami structures are a promising material for interfacing biological systems, they suffer from instability, especially in the presence of DNA-degrading enzymes.

In experiments, however, ‘we can clearly observe that the protein layer efficiently protects the encapsulated DNA nanostructures from degradation. By combining protection with the functional properties of nucleic acid origami, including the possibility to deliver DNA or messenger RNA together with other cargo molecules, we believe that our approach provides interesting future directions for biomedical engineering,’ concludes Kostiainen.

This work was conducted jointly at Aalto University (Finland) with researchers from the University of Helsinki (Finland), Griffith University (Australia), Tampere University (Finland) and University of Twente (The Netherlands).


Seitz et al. (2023). DNA-origami-directed virus capsid polymorphism. Nature Nanotechnologydoi: 10.1038/s41565-023-01443-x

Contact the researchers: 

Iris Seitz, doctoral researcher
[email protected]

Mauri Kostiainen, professor
[email protected]
phone +358503627070

Mauri Kostiainen

Mauri Kostiainen has received a two million euro grant to study new biohybrid materials

The work of Mauri Kostiainen can help combine the best characteristics of biomolecules and synthetic materials.

CCMV AuNP lattice

Biohybrid Materials

Group led by Professor Mauri Kostiainen

Department of Bioproducts and Biosystems
  • Published:
  • Updated:

Read more news

Cone Calorimeter Testing
Research & Art Published:

BIOSUOJA project is saving lives by developing bio-based fire retardant coatings

A talented group of young researchers is making these non-toxic coatings out of wood.
A visual AI-generated sketch for urban development in Battersea district in London
Cooperation, Research & Art, Studies Published:

Architecture students use AI to design social innovations for London

The project combined qualitative evolutionary design and visual generative artificial intelligence, for the first time.
The picture shows the menu, in which the CO2 emissions are marker with color codes and the price in euros.
Press releases, Research & Art Published:

New research: Labeling carbon footprint affects the choices of mass catering customers – and the labeling method matters, too!

A recent study conducted in Germany shows that customers in a student canteen choose low-emission meals when presented with the carbon footprint of meals. This effect was strongest when the information was color-coded in a traffic-light scheme and translated into environmental costs in euros. According to one of the researchers, these findings could also be relevant for Finland, where mass catering is particularly popular.
Dr. Swarnalok De and logos of the Finnish Cultural Foundation, Aalto University and MMD group
Research & Art Published:

Dr. Swarnalok De receives a one-year grant from the Finnish Cultural Foundation

Awarded for research on the development of wearable healthcare sensors for autonomous health monitoring of the aging population