News

Relying on “local food” is a distant dream for most of the world

A recent study from Aalto University shows that less than one-third of the world's population could currently meet their demand for food produced in their local vicinity
food production map
The researchers modelled the minimum distance needed for global communities to meet their nutritional needs. Photo: Aalto University

Globalisation has revolutionised food production and consumption in recent decades and cultivation has become more efficient, and as a result, many people’s diets have diversified and food availability has increased in various parts of the globe. However, it has also led to a situation where the majority of the world population live in countries that are dependent on, at least partially, imported food.  This can intensify vulnerabilities during any kind of global crisis, such as the current COVID-19 pandemic, as global food supply chains are disrupted.

Aalto University dissertation researcher, Pekka Kinnunen, says ‘There are big differences between different areas and the local foliage. For example, in Europe and North America, temperate crops, such as wheat, can be obtained mostly within a radius of 500 kilometres. In comparison, the global average is about 3,800 kilometres’.

The recent study, published in Nature Food and led by Kinnunen, modelled the minimum distance between from crop production to consumption that humans around the world would need to be able to meet their food demand. The study was conducted in collaboration with the University of Columbia, the University of California, the Australian National University and the University of Göttningen. The study factored in six key crop groups for humans: temperate cereals (wheat, barley, rye), rice, corn, tropical grains (millet, sorghum), tropical roots (cassava) and pulses. The researchers modelled globally the distances between production and the consumer for both normal production conditions and scenarios where production chains become more efficient due to reduced food waste and improved farming methods.

It was shown that 27% of the world’s population could get their temperate cereal grains within a radius of fewer than 100 kilometres. The share was 22% for tropical cereals, 28% for rice and 27% for pulses. In the case of maize and tropical roots, the proportion was only 11-16%, which Kinnunen says displays the difficulty of relying solely on local resources.

Foodsheds as areas of self-sufficiency

‘We defined foodsheds as areas within which food production could be self-sufficient. In addition to food production and demand, food fences describe the impact of transport infrastructure on where food could be obtained’, Kinnunen explains.

The study also showed that foodsheds are mostly relatively compact areas for individual crops. When crops are looked at as a whole, foodsheds formed larger areas, spanning the globe. This indicates that the diversity of our current diets creates global, complex dependencies.

According to Associate professor Matti Kummu, who was also involved in the study, the results clearly show that local production alone cannot meet the demand for food; at least not with current production methods and consumption habits. Increasing the share of effectively managed domestic production would probably reduce both food waste and greenhouse gas emissions. However, at the same time, it could lead to new problems such as water pollution and water scarcity in very densely populated areas, as well as vulnerabilities during such occurrences as poor harvests or large-scale migration.

‘The ongoing COVID-19 epidemic emphasises the importance of self-sufficiency and local food production. It would be important also to assess the risks that dependence on imported agricultural inputs such as animal feed proteins, fertilisers and energy, might cause’, says Kummu.

Kummu and Kinnunen work in Water and Development Research Group at Aalto School of Engineering. The group focuses on the sustainability of water resources, especially in the context of water used in food production. Read more: https://wdrg.aalto.fi

Link to the article (nature.com)

More information:

Dissertation Researcher Pekka Kinnunen
Aalto University
pekka.kinnunen@aalto.fi

Professor Matti Kummu
Aalto University
matti.kummu@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Split image: left shows a white truck on a road with plants; right shows digital lines and a partial face. Text: unite! #UniteSeedFund
Awards and Recognition, Cooperation Published:

Two Unite! Seed Fund projects involving Aalto secure top EU funding

Two prestigious EU grants have been awarded to projects that were initially supported with Unite! Seed Funding. Both projects involve Aalto.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.