News

Radiation detector with the lowest noise in the world boosts quantum work

The nanoscale radiation detector is a hundred times faster than its predecessors, and can function without interruption
A false colour electron microscope image of the bolometer, the scale bar shows a single bacteria, indicating how small the device is
Colored electron microscop image of the nanobolometer. The dark oval at the bottom left represents a 1.3-micrometer-long Ralstonia mannitolilytica bacterium. Credit: Roope Kokkoniemi/Aalto University

Researchers from Aalto University and VTT Technical Research Centre of Finland have built a super-sensitive bolometer, a type of thermal radiation detector. The new radiation detector, made of a gold-palladium mixture makes it easier to measure the strength of electromagnetic radiation in real time. Bolometers are used widely in thermal cameras in the construction industry and in satellites to measure cosmic radiation.

The new developments may help bolometers find their way to quantum computers. If the new radiation detector manages to function as well in space as it does in the laboratory, it can also be used to measure cosmic microwave background radiation in space more accurately.

‘The new detector is extremely sensitive, and its noise level – how much the signal bounces around the correct value, is only one tenth of the noise of any other bolometer. It is also a hundred times faster than previous low-noise radiation detectors’, says Mikko Möttönen, who works as a joint Professor of Quantum Technology at Aalto University and VTT.

At first, the research group built a radiation detector out of gold, but it broke in a few weeks, because gold is not compatible with the aluminium which is used as a superconductor in the detector. To overcome this, the group started to use a mixture of gold and palladium, which is very durable but a rare material in bolometers.

‘In addition to the material, the secret of the new radiation detector lies in its really small scale. The nanowire running through the middle of the radiation detector is only about a micrometre long, two hundred nanometres wide and a few tens of nanometres thick’, says Roope Kokkoniemi, who studied the bolometer at Aalto University.

A bolometer works by measuring  the heating effect of radiation. When a bolometer heats up, its electrical characteristics change, and this can be measured with high precision. The smaller the bolometer, the less radiation is required to heat it.

‘A small radiation detector has a low heat capacity, so weak radiation provides a stronger signal’, Kokkoniemi explains.

Better protection

‘Quantum computers operate in cryostats, extremely cold super-freezers, in which even the smallest amount of excess radiation causes a lot of disturbance. As nanobolometers are very sensitive, they could conveniently measure the level of excess radiation in the cryostat in order to reduce the radiation through better protection’, Möttönen says.

The bolometer could also be used to read the value of quantum bits, or qubits. However, for this purpose, the bolometer would need to be even faster.

‘In order to read quantum information in superconducting quantum computers several times in a row without it degrading in between, the bolometer would have to be about a hundred times faster’, Möttönen says.

Microwave amplifiers were also developed in the research. Their task is to strengthen the signal, but they also add noise. The superconducting microwave amplifier developed by VTT succeeded to halve the bolometer noise in comparison to the best commercial amplifier used.

The bolometer was developed in the Quantum Computing and Devices research group led by Mikko Möttönen. His group works with Quanttum Technology Finland, and uses the facilities at Micronova, which is part of the  Otanano research facility. The article was published in the Communications Physics journal on the 11th of October. Read the full article here: https://doi.org/10.1038/s42005-019-0225-6

  • Updated:
  • Published:
Share
URL copied!

Read more news

A small satellite with black panels and a red tag that reads 'REMOVE BEFORE FLIGHT' on a grey background.
Press releases, Research & Art Published:

Finland’s Foresail-1p science satellite successfully launched into space

The Finnish science satellite Foresail-1p was successfully launched into space after 8 PM Finnish time on Friday 28 November 2025, aboard the Transporter-15 mission from Vandenberg Space Force Base, California.
A 3D structure with green spheres interconnected by a grey mesh, set against a multicoloured background.
Research & Art Published:

A paradigm shift: machine learning is transforming research at the atomic scale

Assistant professor Miguel Caro and his research group use and develop machine learning tools to accelerate discoveries from simulation to experiment
A large, historic building with a pink facade and grey roof in a square with people walking and cycling.
Appointments, Cooperation Published:

Aalto academics begin Unite! visiting professorships at TU Darmstadt

As part of the Unite! Visiting Professorship Programme, TU Darmstadt welcomed six visiting professors from Aalto University for the winter semester 2025/2026.
Presidents of Finland and Iceland visiting the Designs for a Cooler Planet exhibition in 2025
Research & Art, University Published:

Applications for our biggest exhibition of the year are now open: Apply to Designs for a Cooler Planet by 26.1.2026!

For the autumn 2026 exhibition, we are looking for new and inspiring innovations, ideas, and experiments from all fields across Aalto University. The exhibition and its events serve as one of the most important showcases of the university’s work to the world. In 2025, the event attracted over 15,000 visitors.