Uutiset

Maailman vähäkohinaisin säteilyilmaisin voi auttaa kvanttitietokoneiden kehityksessä

Nanosäteilyilmaisin on myös edeltäjiään sata kertaa nopeampi, ja se pystyy toimimaan ilman taukoja.
A false colour electron microscope image of the bolometer, the scale bar shows a single bacteria, indicating how small the device is
Väritetty elektronimikroskooppikuva bolometrista. Kuvan vasemmassa alakulmassa oleva ovaalin muotoinen tumma kohta esittää 1.3 mikrometriä pitkää ralstonia mannitolilytica -bakteeria. Kuva: Roope Kokkoniemi/Aalto-yliopisto.

Aalto-yliopiston ja VTT:n tutkijat ovat onnistuneet rakentamaan kultapalladiumista nanokokoisen lämmitykseen perustuvan säteilyilmaisimen eli bolometrin.

”Uusi säteilyilmaisin on äärimmäisen herkkä, ja kohina eli signaalin poukkoilu oikean arvon ympärillä on vain kymmenesosa parhaan kilpailijan kohinasta. Se on myös sata kertaa nopeampi kuin aikaisemmat vähäkohinaiset säteilyilmaisimet”, sanoo Mikko Möttönen, joka toimii Aalto-yliopiston ja VTT:n yhteisprofessorina kvanttiteknologian alalla.

Uudella säteilyilmaisimella sähkömagneettisen säteilyn tehoa voidaan myös mitata reaaliaikaisesti, toisin kuin saman tutkimusryhmän 2016 rakentamalla ilmaisimella, joka piti asettaa alkutilaan aina ennen uutta mittausta.

Tutkimusryhmä teki tutkimusta varten säteilyilmaisimen ensin kullasta. Se meni rikki muutamassa viikossa, sillä kulta ei sovi yhteen alumiinin kanssa, jota käytetään suprajohteena nanosäteilyilmaisimessa. Siksi tutkijat päätyivät käyttämään kultapalladiumseosta, joka on todella kestävä mutta bolometreissa harvinainen materiaali.

”Uuden säteilyilmaisimen salaisuus on materiaalin lisäksi sen todella pieni koko. Säteilyilmaisimen keskellä kulkeva nanolanka on vain noin mikrometrin pituinen, parisataa nanometriä leveä ja muutama kymmenen nanometriä paksu”, sanoo bolometria tutkinut Roope Kokkoniemi Aalto-yliopistosta.

Bolometrien toiminta perustuu mitattavan säteilyn lämmittävään vaikutukseen. Kun bolometri lämpenee, sen sähköiset ominaisuudet muuttuvat, ja tämä voidaan mitata tarkasti. Mitä pienempi bolometri on, sitä vähemmän sen lämmittäminen vaatii säteilytehoa.

”Pienikokoisen säteilyilmaisimen lämpökapasiteetti on pieni, joten heikosta säteilystä saadaan enemmän signaalia”, Roope Kokkoniemi kertoo.

Parempia suojauksia

Säteilyilmaisimia käytetään tällä hetkellä laajasti muun muassa rakennusalalla lämpökameroissa ja satelliiteissa kosmisen säteilyn mittaamisessa. Uusien kehitysaskelien myötä ne voivat löytää tiensä myös kvanttitietokoneisiin.

”Kvanttitietokoneet toimivat kryostaateissa eli äärimmäisen kylmissä superpakastimissa. Niissä pienikin ylimääräinen säteily tuottaa paljon häiriötä. Koska nanobolometri on hyvin herkkä, sillä voisi kätevästi mitata ylimääräisen säteilyn tasoa kryostaatissa, ja vähentää säteilyä paremmilla suojauksilla”, Möttönen kertoo.

Bolometria voitaisiin hyödyntää myös kvanttitietokoneen bittien eli kubittien tilan mittaamisessa. Sitä varten bolometrin tulisi olla vielä nopeampi.

”Jotta kvantti-informaatiota voidaan lukea useita kertoja peräkkäin ilman, että informaatio ehtii mittausten välissä kadota, täytyy bolometrin nopeutta lisätä vielä noin satakertaiseksi”, Mikko Möttönen kertoo.

Jos uusi säteilyilmaisin saadaan toimimaan avaruudessa yhtä hyvin kuin laboratoriossa, sillä voidaan myös mitata kosmista taustasäteilyä nykyistä tarkemmin.

Tutkimuksessa kehitettiin myös mikroaaltovahvistimia. Niiden tehtävä on vahvistaa signaalia, mutta ne voivat samalla lisätä kohinaa. VTT:n tutkijat kehittivät suprajohtavan mikroaaltovahvistimen, joka toimii alhaisessa lämpötilassa. Se onnistui puolittamaan bolometrin kohinan siitä, mihin parhaalla kaupallisella vahvistimella päästään.

Bolometri kehitettiin Mikko Möttösen johtamassa Kvanttilaskennan ja -laitteiden tutkimusryhmässä, joka on osa kvanttiteknologian tutkimuksen kansallista huippuyksikköä (QTF). Tutkimuksessa on hyödynnetty OtaNano-tutkimusinfrastruktuuria ja siihen kuuluvaa Micronovan puhdastilaa. Artikkeli julkaistiin Communications Physics –lehdessä 11. lokakuuta.

Artikkeli: Nanobolometer with Ultralow Noise Equivalent Power

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Karttagrafiikka, jossa näkyy Mekong-jokea ja korkeuseroja.
Palkinnot ja tunnustukset Julkaistu:

Tutkija Marko Kallio palkittiin Britanniassa Mekong-joen kartastaan

Voittoon yltänyt työ on tarinallinen seikkailu läpi Mekong-joen.
Jose Lado, photo by Evelin Kask.
Palkinnot ja tunnustukset Julkaistu:

Espanjalainen fyysikkoseura palkitsee professori Jose Ladon kvanttimateriaaleihin liittyvän teorian kehittämisestä

Professori Jose Lado sai Espanjan fyysikkoseuran (RSEF) ja BBVA-säätiön myöntämän Early Career Award 2023 -palkinnon. Varhaisen tutkijauran palkinto myönnetään espanjalaiselle tai tällä hetkellä Espanjassa työskentelevälle fyysikolle, joka on korkeintaan 35-vuotias ja jolla on merkittävä rooli teoreettisen fysiikan alalla.
Enriqueta Noriega Benitez and Thuy-Linh Phi
Nimitykset Julkaistu:

Enriqueta Noriega Benitez ja Thuy-Linh Phi aloittivat data-agentteina kemian tekniikan korkeakoulussa

Kaksi uutta data-agenttia liittyi Aallon datanhallintaverkostoon keväällä 2023.
Piirroskuvituksessa on siniasuinen mieshamo kumartuneena 3D-printterin ylle, kuvassa on myös maapallo, jonka yllä kulkee lentokone, sekä sormet, jotka pitelevät kuutiota, jossa lukee error!. Kuvitus: Studio Jenni & Jukka.
Aalto Magazine Julkaistu:

Totta vai tarua: 3D-tulostuksella voidaan valmistaa avaruusraketti?

Apulaisprofessori Mika Salmi oikoo 3D-tulostuksesta vallitsevia mielikuvia. Salmen professuurin ala on kestävä kehitys valmistuksessa.