News

Professor Metal

Mari Lundström wants to recover and reuse metals. She approaches her task with a steely resolve.
Professor Mari Lundström Aalto University

Professor Mari Lundström's field of research is hydrometallurgy and corrosion. When she began her studies at the Helsinki University of Technology in 1998, metallurgists were often seen as cogs of the smokestack industry. However, Lundström believes that the true potential for metal recycling is in the hands of the metallurgical industry and researchers in the field.

– We are the ones who can actually make the circular economy and sustainable development a reality. We possess the technological know-how for it.

Lundström's research group searches for metals in secondary raw materials and develops methods and processes designed to more effectively recover and recycle metals.

Wastes contain precious metals

Secondary raw materials include old mobile phones and computers, car batteries, light bulbs and batteries as well as ash containing metals. These are usually considered waste, because they have already been used, unlike, for example, ore just extracted from the earth.

However, an old mobile phone might contain over 40 different elements and several precious metals, which cannot be recovered using today's processes.

- Your mobile phone contains, for example, copper, tin, silver, gold, zinc, indium and rare earths," explains Lundström.

Lundström's research is motivated by the aspiration to achieve sustainable development. For example, over one-fourth of all lithium production goes to batteries, but the lithium contained in them is not currently recovered to a significant extent.

- We can't keep going like this, with metals being lost in waste and side flows.

Lundström also considers the recycling of metals to be politically significant. She explains that, at present, nearly 90 per cent of the rare earths are produced in China and approximately 70 per cent of lithium in South America.

- The EU should be able to produce metals from secondary raw materials, so that we wouldn't be dependent on other parts of the world.

Marketable product for Finland?

A large part of the work done by Lundström's research group is experimentation and modelling.

– We conduct a lot of, for example, electrochemical experiments, leaching tests, analyses and process modelling, not to mention metallurgical data modelling," lists Lundström.

The work days are long, as Lundström wants to be involved in everything. As we walk down the department hallway together, we are bombarded with a hail of questions coming from the rooms: Mari, could you come take a look at this? Mari, we found something!

Lundström feels that it is rewarding to delve into test results with the students for hours on end. The lack of time is a challenge, but Lundström admits that she bears a lion's share of the responsibility for her work.

– Finland has loads of big companies operating in the metallurgy sector, so, yes, our research group has to be world class, too.

Lundström believes that metallurgists are capable of doing great things: developing more environmentally-friendly processes and improving the status of Finnish industry.

- It would be great to see a method we developed become a commercial application and marketable product for Finland or Europe.

From industry to university

Lundström assumed the mantle of professor in February 2015. Before that, she worked for several years in industry with a company called Outotec. She earned her doctorate in 2009, conducting research and publishing papers as a hobby alongside her job.

In 2013, the School of Chemical Technology opened a call for applications in the Tenure Track career system for an Assistant Professor post.

– It was then that the docent who had been my mentor asked if I had ever considered applying for a professorship. And the seed was planted.

Lundström believes that problem-solving skills are needed when working both in industry and academia. She does not consider herself to be exceptionally intelligent, but believes she is good at finding solutions to a variety of problems.

Understanding phenomena is also important to Lundström. 

– When students say that an experiment has gone sideways, I tell them to not think of it that way. I want to understand how that result was reached and what was behind it.

Professors of Aalto University School of Chemical Technology
chem.aalto.fi

  • Published:
  • Updated:

Read more news

Event information on a yellow to coral gradient background with yellow bubbles and a photo of a colorful event space.
Awards and Recognition, Campus, Research & Art Published:

Join us for the first Aalto Open Science Award Ceremony

All Aaltonians are welcome – no registration required!
A man with glasses looks at the camera, with summer nature in the background
Research & Art, University Published:

Donor story - Yrjö Sotamaa: ‘Supporting the university is about building our own future’

Professor Emeritus is still an active design influencer both at home and internationally. He is now also a monthly donor to School of Arts, Design and Architecture.
Image from the conferment ceremony
Cooperation, Research & Art, University Published:

Doctoral education pilot arouses wide interest among applicants and corporate partners

The doctoral education pilot has got off to a fast start.
EU parlamentti
Cooperation, Studies Published:

Milja Mieskolainen: The Schuman internship at the European Parliament exceeded my expectations

Milja Mieskolainen, a Master's student in Accounting at the Aalto University School of Business, had already considered applying for an internship in the European Union, but thought it would be too challenging to get an internship. In spring 2023, however, she noticed an advertisement for internships and decided to give it a try, as there was an interesting vacancy in the Economic governance and EMU Scrutiny Unit. Applying did not prove difficult either. Milja applied, got the job and started her internship at the European Parliament in October.