News

Professor Karttunen had enough of clicking on two-dimensional molecular models – the virtual world brings chemistry alive

Virtual reality helps students to understand the three-dimensional nature of chemistry.
Virtuaalitodellisuus auttaa opiskelijaa hahmottamaan kemian kolmiulotteisuuden.
Virtual Thalidomide molecule (C13H10N2O4).
Professori Antti Karttunen

Professor Antti Karttunen was genuinely irritated. He was clicking on the two-dimensional molecules on his screen and thought that there must be a better way to illustrate atoms and bonds. As virtual reality technology progressed he did not hesitate to start developing it to be suitable for teaching.

‘In the virtual world students can practice intermolecular reactions and perform experiments that would be dangerous in a real laboratory.’

Kuvassa valmis molekyyli.
Virtual reality is also well suited for building larger, more complex and three-dimensional molecules. The picture shows C60 fullerene, a soccer-shaped carbon compound.

In the virtual world, one of the most important basics of chemistry is stored directly in the students’ consciousness. Molecules are three-dimensional, and their structure matters because it determines whether, for example, a molecule is a drug or a poison. 

Previous generations of chemistry students have grown up in a world where the three-dimensional elements of chemistry have been illustrated by physical ball and stick models. The balls are the atoms and the sticks represent the bonds. A tactile model made up from balls and sticks turns into a virtual model.

In addition to acquiring the appropriate technology, creating a virtual course requires user interface expertise and making sure the course content is fit for the virtual world. The method is particularly suitable for subjects like chemistry where 3D and interactivity play major roles. Virtual reality isn’t suitable for all courses as taking notes and team work whilst wearing VR goggles can be challenging.

From the virtual world to hologram glasses

Teamwork and note-taking will become easier in the future. Heavy VR goggles will also become a thing of the past. With augmented reality and light hologram glasses, a chemist can create virtual molecules even on their own desk. If their partner also has glasses, they both see the same molecules in front of their eyes and team work becomes easier.

Glasses with a hologram display are however not yet widely available. However, the availability and price of virtual technology devices make them realistic investments. Following the development of virtual reality technology has made Karttunen also confident in future hologram technology.

‘I believe that within five years the technology will develop so much that hologram glasses will be used by chemists,’ says Antti Karttunen.

In the video doctoral candidate Otso Pietikäinen shows how augmented reality is used in chemistry (subtitles are in Finnish).

  • Published:
  • Updated:
Share
URL copied!

Read more news

Kerrostalo ja kallioita
Cooperation, Press releases, Research & Art Published:

The SUBURBAN PRIDE project examines the relationship between mental images of suburbs and the built environment

The multidisciplinary project combines history of architecture, sociology, and research in critical cultural heritage and landscape architecture. The purpose of the project, based on research and workshops, is to build a sustainable future for suburbs.
Aalto-yliopiston kauppakorkeakoulu. Kuva: Mika Huisman
Research & Art Published:

School of Business is getting more high-quality international applications for professorships

Our excellent rankings reveal the high quality of our research work.
Henrika Yliriskun väitös taidekasvatuksen alalta tarkastettiin Aalto-yliopistossa maaliskuussa 2021.
Research & Art, Studies Published:

‘Environmental art education should address the problem of human-centeredness’

‘I claim’ series presents our researchers and the results of their work. Henrika Ylirisku researches the premises of environmental art education.
InteraktiiQuantum Garden on interaktiivinen elektroninen valotaideteos, jota koskettamalla teoksen värit muuttuvat. Tummasävyisessä kuvassa kaksi kättä kurkottaa eriväristen valoantureiden päälle.
Aalto Magazine, Research & Art Published:

Quantum literacy for all

What do computers, cell phones and GPS navigation have in common? And what about digital cameras, solar panels and fibre optics? The answer is that the functioning of these devices is based on quantum phenomena.