News

Prof. Patrick Rinke Awarded Academy Grant for Developing Biologically Inspired Computing Systems

Prof. Rinke’s three-year joint project with VTT aims to make demanding AI computing tasks use less power while maintaining performance.
Image of neuromorphic circuits
The AI4AI project aims to employ currently available AI tools to design new neuromorphic AI devices. Image: Patrick Rinke/Aalto University, Sayani Majumdar/VTT.

Professor Patrick Rinke of the Department of Applied Physics has been awarded an Academy of Finland grant for a project exploring the development of biology-inspired materials for improved sustainability in artificial intelligence (AI) computation. The project, entitled “AI software-based material design for sustainable AI hardware” (AI4AI), is a collaboration with Sayani Majumdar, Senior Scientist at VTT. VTT is in charge of coordinating the project.

In general, artificial intelligence tasks are extraordinarily demanding for conventional computers; the machines slow down and use enormous amounts of power. As demand for AI increases around the world, so does its environmental impact.

Inspired by the energy efficiency of the human brain, scientists have begun to develop hardware specifically for AI computation. Such neuromorphic hardware imitates the architecture of neuro-biological structures, but its development is still in the early stages. The three-year AI4AI project applies an AI-based material design strategy to create the next generation of neuromorphic AI hardware. The researchers develop electronic synapses and neurons with ultra-low power consumption that maintain fast computational speed, accuracy, and learning capacity in AI tasks.

“We use neural-networked-based AI methods on conventional computer chips to develop new devices that realize neural networks directly on a chip. Such neuromorphic AIs use a lot less power than conventional AIs on conventional chips and are therefore a lot better for the environment,” Professor Rinke says.

According to Rinke, the project is a fascinating opportunity to change the way we perceive AI.

“I really liked the idea of using AI to design the next generation of AI. We always think of AIs as living in the digital realm, but in this project, we are also changing the physical realm (i.e., computing hardware) that the AI runs on. Future AIs are therefore not only evolving digitally, but also physically,” Rinke says.

The funding was granted as part of the Academy of Finland’s call “ICT 2023: Sustainable and Energy-Efficient Solutions for Future ICT”. The AI4AI project starts in 2023.

More information:

CEST researchers standing in a group

Computational Electronic Structure Theory (CEST)

CEST is developing electronic structure and machine learning methods and applying them to computational materials science problems.

Department of Applied Physics
  • Published:
  • Updated:
Share
URL copied!

Read more news

Group Picture
Cooperation Published:

DeployAI Partners Gather for Heart Beat Meeting in Helsinki

The European DeployAI project's partners gathered for the Heart Beat meeting hosted by Aalto University Executive Education in Helsinki.
Professori Maria Sammalkorpi
Research & Art Published:

Get to know us: Associate Professor Maria Sammalkorpi

Sammalkorpi received her doctorate from Helsinki University of Technology 2004. After her defence, she has worked as a researcher at the Universities of Princeton, Yale and Aalto.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2024

Computer scientists in ICML 2024
Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.