News

One million euros to research of radiation detection

Academy of Finland funds projects to develop highly sensitive imaging and measurement techniques.
Tutkija Ville Jokinen Micronovassa materiaalinäyte kädessään, kuva Aino Huovio

Aalto University's projects to be funded include research into technology for imaging the corneal tissue in the eye, ultrasensitive magnetic field detectors, and infrared sensors based on germanium. These three projects received more than half of the available funding from the Academy of Finland’s call for applications.

Professor Zachary Taylor and his research group are developing a novel diagnostic imaging system for early and accurate detection of corneal graft rejection. Using submillimeter wave and THz spectroscopy integrated with near infrared optical coherence tomography, new imaging technology could detect the excess corneal tissue water content, which precedes graft rejection. 

‘Current diagnostic methods are late to detect rejection which often lead to graft failure. This technology will save the high value resource of donor cornea and preserve the graft patient visual acuity and quality of life,’ professor Taylor said. 

Senior University Lecturer Gheorghe-Sorin Paraoanu and his research group are aiming at producing ultrasensitive magnetic fields detectors using a single artificial atom. 

'This could have applications for brain scanning, geology, earthquake prediction, oil exploration and more. Our work on producing and controlling the artificial atom will also affect more fundamental branches of physics like axion detection. These are all applications where one needs to detect small magnetic fields.'

Professor Hele Savin’s joint project with University of New South Wales aims to develop new highly sensitive infrared sensors, which could be applied e.g. in medical diagnostics. The project combines Aalto's expertise in black silicon and laser processing developed at University of New South Wales. 

The funded projects are part of Radiation Detectors for Health, Safety and Security (RADDESS), an Academy Programme that provides funding to projects that study novel device-driven and functional radiation detection systems in areas of both health and safety.

Academy of Finland’s funding decisions

Photo: Aalto University, Aino Huovio

  • Published:
  • Updated:
Share
URL copied!

Related news

Relativistic corrections (RC) greatly improve the accuracy of evGW0 calculations for the CORE65 benchmark set of molecular core excitations
Research & Art Published:

Simple accuracy boost for core excitation calculations

Relativistic corrections that are important for core excitations in molecules and materials are incorporated in complex quantum mechanical calculations in an efficient manner.
red color making sliding shapes on blue background
Research & Art, Studies Published:

Learning to unlearn: What could radically creative education be?

Juuso Tervo is urging us not only to learn new things, but also to unlearn the already learned.
Illustration displaying hands writing letters RAND on a yellow background
Research & Art Published:

CofeRefinery went online and attracted over a hundred participants from all over the Nordics

‘When we went online, we wondered how can we help as many people as possible and make it open for everyone,’ says Richard Darst from Aalto Science-IT
Omar Velazquez
Research & Art Published:

In memoriam: Omar Velazquez, M.Sc., Doctoral Candidate

Omar Velazquez Martinez joined the Aalto community in 2015 as a student of the international European Minerals Engineering Course. From the very beginning, Omar became an active member of the Aalto community, whether supporting activities of the Student Guild, offering invited lectures or hosting new students in our School.