News

Novel quantum device design promises a regular flow of entangled electrons on demand

By dynamically controlling two quantum dots near a superconductor, researchers could time the extraction and splitting of entangled Cooper pairs from a superconductor.
Researchers were able to time the extraction and splitting of entangled Cooper pairs from a superconductor. Picture: Aalto University.
Researchers were able to time the extraction and splitting of entangled Cooper pairs from a superconductor. Picture: Aalto University.

Quantum computer and many other quantum technologies rely on our ability to generate quantum entangled pairs of electrons. However, the systems developed so far typically produce a noisy and random flow of entangled electrons, which hinders synchronized operations on the entangled particles. Now, researchers from Aalto University in Finland propose a way to produce a regular flow of spin-entangled electrons.

Their solution is based on a dynamically driven Cooper pair splitter. In a Cooper pair splitter, two quantum dots near a superconductor are used to generate and separate a pair of entangled electrons known as a Cooper pair. When the Cooper pair splitter is driven with a static voltage, the result is a random and noisy process. A theoretical analysis by the Aalto team showed that driving the system dynamically with external gate voltages makes it possible to control the timing of the splitting process. As a result, exactly one pair of entangled electrons can be extracted during each splitting cycle, leading to a completely noiseless and regular flow of spin-entangled electrons. Such a device, which is feasible with current technology, would pave the way for dynamic quantum information processing with spin-entangled electrons, opening a broad range of possibilities for future quantum technologies.

The original research article, which was published 1.12.2021 in Physical Review Letters, can be accessed here: Dynamic Cooper Pair Splitter

Contact information:

Christian Flindt

Associate Professor
T304 Dept. Applied Physics

Fredrik Brange

Postdoctoral Researcher

You can find more information on entanglement here:

An illustration of the 15-micrometre-wide drumheads prepared on silicon chips used in the experiment. The drumheads vibrate at a high ultrasound frequency, and the peculiar quantum state predicted by Einstein was created from the vibrations. Image: Aalto University / Petja Hyttinen & Olli Hanhirova, ARKH Architects.

Einstein’s “spooky action” goes massive!

The elusive quantum mechanical phenomenon called entanglement has now been made a reality in objects almost macroscopic in size. Results published in Nature show how two vibrating drumheads, the width of a human hair, can display the spooky action.

News
  • Published:
  • Updated:

Read more news

Nesteen polttoainejalostamon tankit Porvoossa
Cooperation, Research & Art Published:

Collaboration with Aalto brings significant financial benefits to Neste

As a result of the collaboration, Neste is now using digital tools in its fuel research alongside traditional testing.
Laboratory work at the School of Chemical Engineering
Cooperation Published:

Join the Unite! Engineering Biology matchmaking event on 11 September

The Unite! Engineering Biology initiative aims to unite researchers from all the nine partner universities in the Unite! alliance to advance key technologies and sustainable processes.
Research & Art Published:

Testing virtual library card

Testing virtual library card
Comic-style illustration of Solip Park's research methods
Awards and Recognition Published:

Doctoral Researcher Solip Park's Paper Receives Honorable Mention at CHI 2024

Doctoral researcher Solip Park's paper has recently garnered attention at the prestigious CHI 2024 conference, earning an "honorable mention" distinction.