News

Novel 3D matrix will allow predictive and effective breast cancer treatment

The extracellular matrix keeps the structure of the tumour tissues unchanged and thereby allows correct and personalized drug identification.
The ability of 3D matrix to maintain the cellular identity and heterogeneity of patient derived cancer tissues allow individualized breast cancer therapy approach. Image: Lahja Martikainen, Pauliina Munne and Nonappa.
The ability of 3D matrix to maintain the cellular identity and heterogeneity of patient derived cancer tissues allow individualized breast cancer therapy approach. Image: Lahja Martikainen, Pauliina Munne and Nonappa.

On average, more than 90% of the breast cancer drugs fail in clinical trials with real patients and each failed drug costs 1.4 billion euro. Tekes has now provided a funding of 0.5 million euros for Aalto University and the University of Helsinki to develop and commercialize a novel preclinical model to enhance drug development processes and personalized medicine approaches.

“By combining cutting edge nanotechnology and advanced cancer biology, we have successfully developed extracellular matrix, a material that mimics the cellular environment of the cancer tissues, keeping the structure of the tumour tissues unchanged and alive for a couple of weeks’ time and thereby allowing correct and personalized drug identification for cancer treatment”, explains Research Fellow Nonappa from Aalto University.

“The 3D matrix not only maintains tissue identity, but also heterogeneity of the tumour, which is a key feature of a preclinical model to predict correctly the real drug responses and thus accelerate the process of getting more effective treatments for the breast cancer patients”, adds postdoctoral researcher Pauliina Munne from the University of Helsinki.

Need for individualized treatments

In Finland, there are 5000 new breast cancer patients yearly, and globally one in every eight women undergo breast cancer diagnosis at one point in her lifetime. Despite significant increase in the five-year survival rates after detection, breast cancer remains one of the leading causes of death in women.

“We have failed to treat breast cancer with the current “one size fits all” treatment approaches. The present preclinical models including cell lines and animal tests are faulty, too simplistic and poorly predictive. This is due to their insufficient ability to mimic the original tumour cellular identity and heterogeneity”, describes Nonappa.

“The tumour consists of diverse cell types. If you try to grow a tumour sample on a Petri dish in a laboratory, only certain cell types will survive. The rest will either die or transform to another cell type. Drug response studies are usually performed using immortal cell lines, which represent only one or few cell types. These models are poorly predicting the drug responses in patient, which is evident from the high number of failed drugs in clinical trials”, adds Munne.

The successful commercialization team consists of inter-disciplinary team including internationally acclaimed material science group from Aalto University and breast cancer experts from the University of Helsinki together with an established network between Hospital district of Helsinki and Uusimaa, securing the availability of tumour samples.

Further information:

Nonappa
Research Fellow
Aalto University
tel. +358 50 593 1480
[email protected]

Pauliina Munne
Postdoctoral researcher
University of Helsinki
tel. +358 29 412 5494
[email protected]

 

  • Published:
  • Updated:
Share
URL copied!

Related news

Heikko kirkastuma, kuva: Metsähovin radiotutkimusasema
Press releases Published:

New study: The quiet Sun is much more active than we thought

The quiet Sun has been studied considerably less than the active Sun.
Pohjoisen ikirouta-alueen vehreää kasvillisuutta. Kuva: Ive van Krunkelsven
Press releases, Research & Art Published:

Greenhouse gas emissions from permafrost area larger than earlier estimated

Plant roots in soil stimulate microbial decomposition, a mechanism called the priming effect. A recent study published in Nature Geoscience shows that the priming effect alone can cause emission of 40 billion tonnes carbon from permafrost by 2100.
vaping
Press releases, Research & Art Published:

How vaping companies exploit Instagram for youth-oriented marketing?

Researchers use artificial intelligence to analyse hundreds of thousands of Instagram posts about vaping
Kuvituskuva: Matti Ahlgren.
Press releases Published:

Fast communications and flexibility helped grocery retailers cope with the coronavirus in spring

Research shows that daily communications, flexible planning and resourcing, and agility in action were important for helping the grocery trade get through the first wave of the coronavirus.