News

New simulation code to eliminate need for super computers in modelling indoor aerosols

Focused on public indoor environments, the code will be openly available for researchers and other professionals

The simulation code shows how air circulation affects aerosol spread on a bus. Simulation and visualisation: Ville Vuorinen and Heikki Kahila, Aalto University

Assistant Professor Ville Vuorinen is developing a code to vastly improve how aerosol clouds are modelled, allowing even regular desktop computers to compute the currently lengthy calculations. Aerosols are tiny airborne particles that carry pathogens, like SARS-CoV-2 virus.

‘There’s increasing research evidence that aerosols play a strong role in spreading the Corona virus. Normally modelling aerosol movement requires a super computer and, even then, it takes several days. Our program makes use of graphics cards from the gaming word, which can add so much computing power to a regular computer that we can get a result in as little as one hour,’ Vuorinen says.

The program takes into account the number of people and their positions, in addition to calculating how the space itself and ventilation systems affect how aerosol clouds form, spread, and dissipate. When ready, Vuorinen intends to make the code openly available.

‘Through this 1.5-year project we’re modelling various public spaces from sport events to public transport and schools. Our approach could offer solutions to keeping society open during a pandemic. We’ve set out to make an effective and versatile tool available in at least one programming language that helps researchers and other professionals,’ he explains.

Vuorinen is focusing on modelling indoor spaces, where the risk of an aerosol-based infection is significantly higher.

‘Aerosol concentrations easily increase in closed environments, especially when there are a lot of people gathered and there’s loud talk, yelling or singing. During an epidemic it’s wise to avoid these spaces or minimize your time there, even while wearing a mask,’ he says.

Last spring Vuorinen’s team, in collaboration with researchers from other Finnish institutions, discovered how differently sized aerosol droplets behave in the air. Until then, it was assumed that only very small, under-5 micrometre droplets stay suspended in aerosol clouds.

‘Our study found that larger droplets – as big as 50-100 micrometres – can rapidly dry up before they reach the floor and linger in the air. This has major implications for the ventilation and air circulation of public spaces, as well as for mask recommendations,’ Vuorinen adds.

The project received funding from the Academy of Finland in spring 2020.

Read the study from last spring: Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors (sciencedirect.com)

Modelling confirms: Isolating the ill and prioritising remote work are key strategies in combating the coronavirus

Researchers emphasise that longer indoor exposure times and closer proximity to others bring greater risk of infection. Avoiding overlapping shifts and a good ventilation can improve workplace safety.

Lue lisää
Aerosol particles

Researchers modelling the spread of the coronavirus emphasise the importance of avoiding busy indoor spaces

A joint project carried out by four Finnish research organisations has studied the transport and spread of coronavirus through the air. Preliminary results indicate that aerosol particles carrying the virus can remain in the air longer than was originally thought, so it is important to avoid busy public indoor spaces. This also reduces the risk of droplet infection, which remains the main path of transmission for coronavirus.

Lue lisää
Aerosolipilven mallintaminen
Health and Wellness researcher looking at a 3D printer from below

Auta taistelussa koronavirusta vastaan

Lahjoita nyt ja tue koronaviruspandemiaan liittyvää tutkimusta ja opetusta.
  • Published:
  • Updated:
Share
URL copied!

Related news

Taiteellinen kuva panssaroidusta superhydrofobisesta pinnasta, joka kestää iskuja ja hylkii nesteitä tehokkaasti. Kuva: Juha Juvonen.
Cooperation, Press releases, Research & Art Published:

New funding to commercialise high-tech liquid-repelling coatings

New funding to get damage-resistant, liquid-repelling surfaces out of the laboratory and onto solar panels, skis, and more
The computer game could help in the treatment of depression alongside therapy and drug treatment. Picture: Matias Palva’s research group, Aalto University.
Press releases Published:

Researchers developing computer game to treat depression

Playing a therapeutic action game can ease symptoms in patients with depression, and improve their cognitive performance
An electron microscope image of the device used to extract entangled electrons
Press releases Published:

Entangling electrons with heat

Entanglement is key for quantum computing and communications technology; Aalto researchers can now extract entangled electrons using heat
Ihminen tekemässä työtä laboratotiossa.
Press releases, Research & Art Published:

How to motivate people to comply voluntarily with necessary restrictions – 13 principles for effective COVID-19 related communication

Decision-makers and experts should support people's autonomy, competence and relatedness in their COVID-19 related communications with citizens.