News

New funding to commercialise high-tech liquid-repelling coatings

New funding to get damage-resistant, liquid-repelling surfaces out of the laboratory and onto solar panels, skis, and more
Taiteellinen kuva panssaroidusta superhydrofobisesta pinnasta, joka kestää iskuja ja hylkii nesteitä tehokkaasti. Kuva: Juha Juvonen.
Picture: Juha Juvonen.

New research, published this year, made superhydrophobic surfaces that were strongly resistant to damage. The result, which was published on the front cover of the journal Nature, was a major breakthrough; until now, extremely water-repellent surfaces have been too delicate to be used widely. The team behind the original breakthrough has now received funding for their follow-up project called ARMOR, which aims to get the materials out of the laboratory, and into commercial products.

“The key to the original work was applying a microstructured pattern to the surface before coating it with the water-repelling compounds” explains Professor Robin Ras, the lead researcher on the project. “With ARMOR, we are now looking into what surfaces we can apply this patterning to for real-world uses.”

In the original paper, the team was able to apply the extremely water repellent coating to hard materials, like ceramic and glass. One block of funding from Business Finland is supporting research on how the superhydrophobic coatings can be applied to flexible, plastic materials. “We are discussing potential applications with a wide range of companies,” said Professor Sami Franssila, a materials chemist also taking part in the work. “One potential application we’re exploring is if we can make injection moulded materials have the armour plated patterning. This would be really useful for plastic casings for sensors on the outside of houses, that have to be weather resistant.” The team is also collaborating with a sports equipment company to see if the coating can be applied to skis, “If the bottom of your skis are superhydrophobic, it reduces friction with the snow so you’ll go faster” explained Ville Jokinen another materials scientist on the project “but of course, skis are used in very demanding conditions, so the coatings have to be damage resistant.”

The second block of funding, from the Future Makers program, is supporting research into applying the ARMOR coating to hard materials like glass and wood. In particular, superhydrophobic coatings on glass would be very useful for solar panels, where their water-repelling properties will keep the panels clean of dirt and grime that would reduce the amount of light that the solar panel can absorb. 

“We are looking forward to working with partner companies, and learning more about their production methods and how our new technology can be applied to it” said Juuso Korhonen, an Aalto University researcher who is the business developer on the ARMOR project, “we are also excited to work with other companies who need superhydrophobic coatings with strong damage resistance, and are open to setting up further collaborations.”

Contact

Juuso Korhonen
Business developer and research fellow
[email protected]
+358504137760

Robin Ras
Professor
[email protected] 

Sami Franssila
Professor
[email protected]

Ville Jokinen
University Lecturer
[email protected]

Read more

Super hydrophobic surfaces by Juha Juvonen

Major breakthrough in extremely water-repellent materials makes them durable enough for the real world

A new armour-plated superhydrophobic material has been developed for potential uses in medical equipment, solar panels and more

News
  • Published:
  • Updated:
Share
URL copied!

Read more news

Staff and students from the seven Unite! partner universities met at the 4th Dialogue event in Barcelona in November 2021 to discuss the future of Unite!.
Cooperation Published:

2022 brings new opportunities for the future of Unite!

In 2022 Unite! alliance is preparing for the new Erasmus+ call for European Universities Initiative and will be strengthened by two new partners.
Yksityiskohta kryostaatista. Kuva: Mikko Raskinen.
Cooperation Published:

A major project brings together Finnish industry and research for quantum technology development

A new research project has been launched to accelerate the progress of Finnish quantum technology. The QuTI project, coordinated by VTT Technical Research Centre of Finland, will develop new components, manufacturing and testing solutions, and algorithms for the needs of quantum technology. The QuTI consortium, partly financed by Business Finland, consists of 12 partners and has a total budget of around EUR 10 million.
Graz University of Technology and Wroclaw University of Science and Technology join the Unite! alliance. In the image photos of the university buildings.
Cooperation Published:

Graz University of Technology and Wroclaw University of Science and Technology join the Unite! alliance

With the expansion from seven to nine members, Unite! University Network for Innovation, Technology and Engineering increases its impact on the European Higher Education Area.
Aalto Startup Center
Campus, Cooperation Published:

Aalto University joins the City of Helsinki's new campus incubator programme

Helsinki wants to create a strong network of business incubators in the city in cooperation with higher education institutions.