News

New epidemic modelling facilitates assessment of corona strategies

Carried out as a joint project involving Finnish, Swedish and Norwegian researchers, the model also takes into account network structures and human mobility.
Kuva: NordicMathCovid-hanke.
Picture: Aalto University/NordicMathCovid project.

The NordicMathCovid project aims to model corona and future epidemics more extensively than has been previously attempted. It also builds towards long-term cooperation in mathematical modelling and extensive collection of health data.

"’One of the purposes of the project is to compare different corona models and scenarios in different countries. For example, we can apply Swedish figures to conditions in Finland and Norway or see what would have happened if Sweden had acted differently,’ says Professor Lasse Leskelä from Aalto University.

Traditional epidemic modelling does not take into account the network structure, geographical location or human mobility. Modern network theory provides computational methods for modelling population contact structures, which is needed in order to assess, for example, the contribution of school closures towards slowing down the epidemic.

‘We are studying large populations. We do not assume that individuals are associated to each other on an entirely random basis; instead, we apply knowledge about how social networks are usually shaped: some people, such as superspreaders, have more contacts than others. In addition, social networks are clustered, which means that the connections are interlaced,’ explains Professor Mikko Kivelä.

The large variations in contacts, mobility and social activity in different population groups have a significant impact on the spread of the epidemic and the formation of immunity. In order to understand these phenomena, the project will develop new stochastic models.

Tutkijat hyödyntävät mahdollisimman monipuolista, realistista ja reaaliaikaista lääketieteellistä, fysikaalista ja sosiaalista dataa.
The researchers are utilising an as diverse as possible range of realistic and real-time medical, physical and social data. Picture: Aalto University/NordicMathCovid project.

Data from different sources

The researchers are utilising an as diverse as possible range of realistic and real-time medical, physical and social data. At the general level, Statistics Finland is providing data related to people's mobility, with telecommunications operators providing more detailed data. Vehicle data can be obtained from road traffic. Local authorities can provide structural data on schools, which provides information on which areas the pupils of different schools are drawn from.

‘The data is always stored on the secure servers that belong to its owner or to the CSC IT Center for Science’, Leskelä explains.

In addition to examining the spread of communicable diseases, the data and models may also be used to compare diverse vaccination strategies.

‘Mathematical modelling allows to explore and try to understand the spread of the epidemic and also the question of who should be vaccinated first,’ says Professor Tapio Ala-Nissilä.

The research can also be used to examine the structure of the infectious disease situation.

‘Our research can tell us, for example, how working remotely affects the spread of the disease,’ Kivelä explains.

The project is led by Professor Tom Britton from the University of Stockholm and includes researchers from Aalto University and the University of Oslo as well as the countries’ national health institutes: the Finnish Institute for Health and Welfare (THL), the Public Health Agency of Sweden and the Norwegian Institute of Public Health (NIPH). In addition to the stochastics research group led by Lasse Leskelä, the project also includes Mikko Kivelä's network science research group and Tapio Ala-Nissilä's computational physics research group.

The budget for the two-year project comes in at just under EUR 1 million. The project is funded by NordForsk.

The name of the project is ‘Data streams and mathematical modelling pipelines to support preparedness and decision making for COVID-19 and future pandemics’. An objective for the future is to extend the cooperation in mathematical modelling to also include Denmark, Iceland and the Baltic countries.

Further information:

  • Published:
  • Updated:
Share
URL copied!

Read more news

Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.
bakteereja ohjataan magneettikentän avulla
Press releases, Research & Art Published:

Getting bacteria into line

Physicists use magnetic fields to manipulate bacterial behaviour
border crossings 2020
Press releases, Research & Art Published:

Nordic researchers develop predictive model for cross-border COVID spread

The uniquely multinational and cross-disciplinary research was made possible by transparent data-sharing between Nordic countries.
Aalto-yliopiston kauppakorkeakoulu / Kuva Roope Kiviranta
Appointments Published:

Professor appointments at the School of Business

Prottoy Akbar, Pablo Warnes, Erkki Vihriälä and Christoph Huber will start in their new positions on 1 August 2024.