Uutiset

Uusi epidemiamallinnus helpottaa koronastrategioiden arviointia

Suomalaisten, ruotsalaisten ja norjalaisten tutkijoiden yhteishanke huomioi mallissa myös verkostorakenteet ja ihmisten liikkuvuuden.
Kuva: NordicMathCovid-hanke.
Kuva: Aalto-yliopisto/NordicMathCovid-hanke.

NordicMathCovid-hanke pyrkii aiempaa laaja-alaisemmin mallintamaan koronaa ja tulevia epidemioita. Lisäksi se rakentaa pitkäjänteistä yhteistyötä matemaattisen mallintamisen ja laajamittaisesti kerätyn terveysdatan ympärille.

”Yksi hankkeen tarkoituksista on vertailla maiden erilaisia koronamalleja ja -skenaarioita. Voimme esimerkiksi soveltaa Ruotsin lukuja Suomen ja Norjan ympäristöön tai katsoa, mitä olisi tapahtunut, jos Ruotsi olisi toiminut toisin”, sanoo professori Lasse Leskelä Aalto-yliopistosta.

Perinteinen epidemiamallinnus ei ota huomioon verkostorakennetta, maantieteellistä sijaintia tai ihmisten liikkuvuutta. Moderni verkostoteoria tarjoaa laskennallisia menetelmiä väestön kontaktirakenteiden mallintamiseen, mikä on tarpeen haluttaessa arvioida esimerkiksi koulujen sulkemisen vaikutusta epidemian hidastumiseen.

”Tutkimme isoja populaatioita. Emme oleta, että ihmiset ovat täysin satunnaisesti keskenään tekemisissä, vaan käytämme hyväksemme tietoa siitä miten sosiaaliset verkostot ovat yleensä rakentuneet: toisilla ihmisillä, esimerkiksi supertartuttajilla, on enemmän kontakteja kuin toisilla. Lisäksi sosiaaliset verkostot ovat klusteroituneita eli yhteydet menevät ristiin”, professori Mikko Kivelä kertoo.

Kontaktien, liikkuvuuden ja sosiaalisen aktiivisuuden suuri vaihtelu eri väestöryhmissä oleellisesti vaikuttaa epidemian leviämiseen ja immuniteetin muodostumiseen. Näiden ilmiöiden ymmärtämiseksi hankkeessa kehitetään uusia stokastiikan eli tilastomatematiikan malleja.

Tutkijat hyödyntävät mahdollisimman monipuolista, realistista ja reaaliaikaista lääketieteellistä, fysikaalista ja sosiaalista dataa.
Tutkijat hyödyntävät mahdollisimman monipuolista, realistista ja reaaliaikaista lääketieteellistä, fysikaalista ja sosiaalista dataa. Kuva: Aalto-yliopisto/NordicMathCovid-hanke.

Dataa eri lähteistä

Tutkijat hyödyntävät mahdollisimman monipuolista, realistista ja reaaliaikaista lääketieteellistä, fysikaalista ja sosiaalista dataa. Tilastokeskus koostaa yleisellä tasolla ihmisten liikkumiseen liittyvää dataa, ja tarkempaa dataa tarjoavat teleoperaattorit. Myös tieliikenteestä saadaan ajoneuvodataa. Kaupungeilta voi selvitä myös koulujen rakenteellista dataa, eli miltä alueelta käydään missäkin koulussa.

”Data säilyy aina sen omistajan tai CSC Tieteen tietotekniikan keskuksen turvatuilla palvelimilla”, Leskelä kertoo.

Tartuntatautien leviämisen lisäksi datan ja mallien avulla voi vertailla erilaisia rokotusstrategioita.

”Matemaattisen mallinnuksen avulla on mahdollista tutkia ja yrittää ymmärtää epidemian leviämistä ja myös sitä, keitä kannattaisi ensin rokottaa”, professori Tapio Ala-Nissilä sanoo.

Tutkimuksen avulla voidaan tarkastella tartuntatautitilannetta myös rakenteellisesti.

”Tutkimuksemme voi esimerkiksi kertoa, miten töiden tekeminen etänä vaikuttaa taudin leviämiseen”, Kivelä sanoo.

Hanketta johtaa professori Tom Britton Tukholman yliopistosta, ja siinä on mukana Aalto-yliopiston ja Oslon yliopiston tutkijoita sekä kansalliset terveysinstituutit eli Terveyden ja hyvinvoinnin laitos (THL) Suomesta, Folkhälsomyndigheten Ruotsista ja Folkehelseinstituttet Norjasta. Lasse Leskelän johtaman stokastiikan tutkimusryhmän lisäksi hankkeessa ovat Aallosta mukana Mikko Kivelän verkostotieteen tutkimusryhmä ja Tapio Ala-Nissilän laskennallisen fysiikan tutkimusryhmä.

Kaksivuotisen hankkeen budjetti on yhteensä vajaa miljoona euroa ja sitä rahoittaa NordForsk.

Hankkeen nimi on Data streams and mathematical modelling pipelines to support preparedness and decision making for COVID-19 and future pandemics. Tulevaisuudessa on tavoitteena laajentaa matemaattisen mallintamisen yhteistyötä Tanskaan, Islantiin ja Baltian maihin.

Lisätietoa:

Lasse Leskelä

Professori (Associate professor)
  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

mika_sillanpaa_11_en.jpg
Nimitykset Julkaistu:

Mika A. Sillanpää: Olisi hyödyllistä, jos meillä olisi laboratoriossa pari mustaa aukkoa

Heisenbergin epätarkkuusperiaatteen kiertämisestä kvanttigravitaation osoittamiseen – professori venyttää kvanttifysiikan rajoja.
Pärttyli Rinne, photo by Nora Rinne
Yliopisto Julkaistu:

Pärttyli Rinne: Vaakakupissa painaa työn sisäinen merkityksellisyys ja taloudellinen hauraus

"Ilman vakituista virkaa olevat akateemiset ihmiset kokevat epävarmuutta ja stressiä, joka liittyy etupäässä taloudelliseen haurauteen. Se ei ole vain minun kokemukseni."
Rakkauden lajit muodostavat tilastollisesti samankaltaisuusjatkumon, jossa rakkauden kokemuksen voimakkuus heikkenee. Kuva: Philosophical Psychology -lehti, https://doi.org/10.1080/09515089.2023.2252464.
Mediatiedotteet Julkaistu:

Missä tuntuu rakkaus? Uusi tutkimus valottaa rakkauden luonnetta aiempaa tarkemmin

Aalto-yliopiston tutkijat ovat selvittäneet 27:ään eri rakkauden lajiin liittyviä tunnekokemuksia ja muodostaneet niiden perusteella kehokarttoja, joista selviää missä rakkaus tuntuu.
Värikkäitä ja läpinäkyviä pinnoitenäytteitä puupölkyn päällä.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Onko puu ruskeaa, sinistä, keltaista vai läpinäkyvää? Tutkijat löysivät keinon tehdä puusta läpinäkyviä ja värikkäitä pinnoitteita

Tutkijat ovat onnistuneet kehittämään puiden sisältämästä ligniinistä uudenlaisia pinnoitteita.