News

Nanofiber scaffolds demonstrate new features in the behaviour of stem and cancer cells

A discovery in the field of biomaterials may open new frontiers in stem and cancer cell manipulation and associated advanced therapy development.
Biomedical scaffold

Novel scaffolds are shown enabling cells to behave in a different but controlled way in vitro due to the presence of aligned, self-assembled ceramic nanofibers of an ultra-high anisotropy ratio augmented into graphene shells.

“This unique hybrid nano-network allows for an exceptional combination of selective guidance stimuli for stem cell development, variations in immune reactions, and behavior of cancer cells”, says Professor Michael Gasik from Aalto University.

These scaffolds, for example, were shown to be able to direct the preferential orientation of human mesenchymal stem cells, similarly to neurogenic lineage, to suppress of major inflammatory factors expression and to immobilize cancer cells.

The selective downregulation of specific inflammatory cytokines may be anticipated as a new tool for understanding the human immune system and ways of treating associated diseases. The effects observed are self-regulated by cells only, without the side effects usually arising from the use of external factors.

New scaffolds may help to control the fate of stem cells, such as development towards axons and neurites formation. This is important, for instance, in the development of Alzheimer’s disease therapy. The discovery may also be very useful in developing new cancer tumour models, understanding how cancer develops, and developing new cancer therapies.

Fluorescent images of breast carcinoma cell line showing the morphological changes of cells grown on vertical GAIN scaffolds.

The results of the study were published in Nature Scientific Reports. Aalto University made the study in collaboration with Protobios, CellIn Technologies, and Tallinn University of Technology.

 

For more information:

Professor Michael Gasik
Aalto University
[email protected]
Tel. +358 50 5609511 

 

Kazantseva, J. et al. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour. Sci. Rep. 6, 30150; doi: 10.1038/srep30150 (2016).

  • Published:
  • Updated:
Share
URL copied!

Read more news

Research & Art Published:

Maintenance break in ACRIS on 5 June 2023

Maintenance break in ACRIS on 5 June 2023
The winning collection by Ruusa Vuori at Aalto University's fashion show Näytös23, a model walking on the catwalk
Awards and Recognition, Research & Art, Studies Published:

Ruusa Vuori wins the Näytös23 Award with her delicate collection

Aalto University's Fashion Show on Friday 26 May displayed collections by Bachelor's and Master's students.
Eero Eloranta
Research & Art, University Published:

New book on the development of Industrial Engineering and Management in Finland and internationally

The book describes Industrial Engineering and Management as part of economic development and changes in the universities of technology.
Picture of Marika Tervahartiala and Kamyar Hasanzadeh after the event in front of the Hybrid Stage area.
Research & Art Published:

Perspectives on open data: Aalto Research Data Uncovered

Marika Tervahartiala and Kamyar Hasanzadeh took the stage to share their insights on opening geographic and visual data.