News

Nanofiber scaffolds demonstrate new features in the behaviour of stem and cancer cells

A discovery in the field of biomaterials may open new frontiers in stem and cancer cell manipulation and associated advanced therapy development.
Biomedical scaffold

Novel scaffolds are shown enabling cells to behave in a different but controlled way in vitro due to the presence of aligned, self-assembled ceramic nanofibers of an ultra-high anisotropy ratio augmented into graphene shells.

“This unique hybrid nano-network allows for an exceptional combination of selective guidance stimuli for stem cell development, variations in immune reactions, and behavior of cancer cells”, says Professor Michael Gasik from Aalto University.

These scaffolds, for example, were shown to be able to direct the preferential orientation of human mesenchymal stem cells, similarly to neurogenic lineage, to suppress of major inflammatory factors expression and to immobilize cancer cells.

The selective downregulation of specific inflammatory cytokines may be anticipated as a new tool for understanding the human immune system and ways of treating associated diseases. The effects observed are self-regulated by cells only, without the side effects usually arising from the use of external factors.

New scaffolds may help to control the fate of stem cells, such as development towards axons and neurites formation. This is important, for instance, in the development of Alzheimer’s disease therapy. The discovery may also be very useful in developing new cancer tumour models, understanding how cancer develops, and developing new cancer therapies.

Fluorescent images of breast carcinoma cell line showing the morphological changes of cells grown on vertical GAIN scaffolds.

The results of the study were published in Nature Scientific Reports. Aalto University made the study in collaboration with Protobios, CellIn Technologies, and Tallinn University of Technology.

For more information:

Professor Michael Gasik
Aalto University
michael.gasik@aalto.fi
Tel. +358 50 5609511 

Kazantseva, J. et al. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour. Sci. Rep. 6, 30150; doi: 10.1038/srep30150 (2016).

  • Updated:
  • Published:
Share
URL copied!

Read more news

Aalto University's exhibition stand at an event with a large crowd moving under a purple-lit cube.
Research & Art Published:

Aalto at Slush: creative design and new innovations

Aalto University's Slush exhibition featured the design-based material innovation Bubbles with Benefits. The exhibition also highlighted the importance of design as a driver of technological innovation.
Research & Art, Studies Published:

New recommendation: doctoral students’ plans (DPSP) to be discussed twice a year

Doctoral students and supervising professors are encouraged to use the My Dialogue schedule to discuss the Doctoral personal study plan (DPSP).
Learning Centre graphics
Research & Art, Studies Published:

Remember to pay attention to the terms of use of electronic resources

A wide range of electronic resources has been acquired for the use of Aalto University students and researchers. However, it is good to remember that all use of the materials acquired by the Aalto University Learning Centre is subject to the terms of use.
Black text on blue background: #27 ShanghaiRanking Global Ranking of Academic Subjects 2025
Research & Art Published:

Aalto University's marine technology ranked 27th globally

Seven fields of Aalto University ranked among the top one hundred in the prestigious Shanghai Ranking Global Ranking of Academic Subjects