Machines to make sense of our health

Making use of artificial intelligence methods for personalised medicine.
Samuel Kaski
'Using algorithms, we’ve been able to find out what information is relevant in datasets, and in their dependencies.' Photo: Aleksi Poutanen

Samuel Kaski, Professor of Computer Science:

My research focuses on machine learning algorithms, which are powerful AI tools that benefit many areas in our day-to-day lives. They power things like automatic text translation, face recognition in pictures, and voice assistants like Siri and Alexa. There’s hope that soon these powerful computer-driven predictions will be put to work in hospitals assisting clinicians in making diagnoses ― a method commonly referred to as personalised medicine. If we can make a deep learning algorithm that can spot your face in a busy crowd, can we detect when you’re getting ill and identify how to best treat you? 

Cancer samples make up one successful example. Using algorithms, we’ve been able to find out what information is relevant in datasets, and in their dependencies. These tools improve prognoses of what kinds of therapies are effective for each patient, based on a specific tissue sample. 

However, one of the main challenges we face in this task is data quantity. Successful deep learning methods current require huge datasets to train on. Before a computer can detect a face in a picture, it needs to see thousands of photos of faces and more of things without faces before it can tell them apart. For patient data, though, the datasets we have to train with are much smaller. For some rare diseases there will only be information on a handful of cases ― we need to develop new methods that can provide the great predictive power of deep learning algorithms, but with much less training data. To create algorithms that would mean a computer could monitor your own health, the dataset available shrinks even further to only one person: you! My research group is working on designing new approaches better suited to smaller data sets. 

As well as being able to handle smaller amounts of data, we need to be able to make algorithms explain what they do. When your smartphone’s keyboard suggests a word to you based on what you typed, you don’t really think about how it reached that suggestion. However, if Siri started suggesting that you need to take expensive medication with side effects, or undergo a risky operation with a long recovery time, you’ll definitely want to know why it this suggestion. I co-supervise a group that is looking to develop AI methods that can explain how they have reached their conclusions, which will greatly help integrate the strength of new artificial intelligence tools into existing healthcare infrastructure.  

These problems are not unique to health applications for artificial intelligence. The best way that we can develop AI for a full range of advanced applications is by building expert communities that can work on different aspects in close collaboration. I am the director of the Finnish Center for Artificial Intelligence (FCAI), a joint initiative by Aalto University, Helsinki University and VTT. Our slogan is that we create ‘Real AI for Real People in the Real World’ and our work on developing new AI methods for personalized medicine is an example of this. FCAI brings together engineers and scientists with expertise and experience across a number of fields to develop the next generation of AI together ― and use it to solve society’s grand challenges. 

From clean energy to personalized medicine – a book about the power of the university

The Aalto Effect is a tribute to the ambitious and uncompromising work of dozens of researchers.

Read more
Aalto Effect book cover / Photo by Mikko Raskinen
  • Published:
  • Updated:
URL copied!

Read more news

Kerrostalo ja kallioita
Cooperation, Press releases, Research & Art Published:

The SUBURBAN PRIDE project examines the relationship between mental images of suburbs and the built environment

The multidisciplinary project combines history of architecture, sociology, and research in critical cultural heritage and landscape architecture. The purpose of the project, based on research and workshops, is to build a sustainable future for suburbs.
Aalto-yliopiston kauppakorkeakoulu. Kuva: Mika Huisman
Research & Art Published:

School of Business is getting more high-quality international applications for professorships

Our excellent rankings reveal the high quality of our research work.
Henrika Yliriskun väitös taidekasvatuksen alalta tarkastettiin Aalto-yliopistossa maaliskuussa 2021.
Research & Art, Studies Published:

‘Environmental art education should address the problem of human-centeredness’

‘I claim’ series presents our researchers and the results of their work. Henrika Ylirisku researches the premises of environmental art education.
InteraktiiQuantum Garden on interaktiivinen elektroninen valotaideteos, jota koskettamalla teoksen värit muuttuvat. Tummasävyisessä kuvassa kaksi kättä kurkottaa eriväristen valoantureiden päälle.
Aalto Magazine, Research & Art Published:

Quantum literacy for all

What do computers, cell phones and GPS navigation have in common? And what about digital cameras, solar panels and fibre optics? The answer is that the functioning of these devices is based on quantum phenomena.