Maskiner kan hjälpa oss att förstå vårt hälsotillstånd

Artificiell intelligens kan spela en roll i personaliserad medicin.
Samuel Kaski
“Med hjälp av algoritmer har vi kunnat ta reda på vilken information i dataseten som är relevant och kartlägga deras inbördes beroenden.” Foto: Aleksi Poutanen

Samuel Kaski, professor i datavetenskap:

Min forskning fokuserar på maskininlärningsalgoritmer. De är kraftfulla AI-verktyg som är till nytta inom många områden i vår vardag. De ligger bakom sådant som automatisk textöversättning, ansiktsigenkänning i bilder och röstassistenter som Siri och Alexa. Nu är hoppet att dessa kraftfulla, datordrivna förutsägelser kan användas i sjukhus för att hjälpa läkare att diagnosticera patienter – en metod som kallas personaliserad medicin eller precisionsmedicin. Om vi kan skapa en djup inlärningsalgoritm som kan hitta ditt ansikte i en folkmassa, kan vi då också upptäcka när du håller på att bli sjuk och identifiera hur vi kan ge dig behandling på bästa sätt?

Cancerprov är ett framgångsrikt exempel. Med hjälp av algoritmer har vi kunnat ta reda på vilken information i dataseten som är relevant och kartlägga deras inbördes beroenden. Dessa verktyg förbättrar prognoser för vilka sorts terapier som är effektiva för varje enskild patient baserat på ett specifikt vävnadsprov.

En stor utmaning som den här uppgiften ställer oss inför är dock datakvantitet. Framgångsrika djupinlärningsmetoder kräver för tillfället gigantiska dataset för att tränas upp. Innan en dator kan hitta ett ansikte i en bild måste den se tusentals foton av ansikten och ännu fler foton av saker utan ansikten innan den kan skilja dem åt.  I sjukvården är dataseten för att träna datorn mycket mindre. För vissa ovanliga sjukdomar finns det bara information från en handfull patientfall – vi behöver utveckla nya metoder som erbjuder den fantastiska förmågan att ge förutsägelser som djupinlärningsalgoritmer besitter, men med mycket mindre träningsdata. Om en dator sedan ska kunna övervaka din egen hälsa krymper datasetet ner till en enda person: du! Min forskningsgrupp arbetar på att designa nya tillvägagångssätt som är bättre anpassade för små dataset.

Förutom att hantera mindre mängder data måste vi kunna få algoritmerna att förklara vad de gör. När tangentbordet på din smarta telefon föreslår ett ord baserat på vad du skrev, så tänker du inte direkt på hur den kom fram till det förslaget. Men om Siri börjar föreslå att du måste ta en dyr medicin med bieffekter eller genomgå en riskfylld operation med lång återhämtningstid kommer du definitivt vilja veta varför den gjorde det förslaget. Jag handleder en grupp som undersöker hur man kan utveckla AI-metoder som förklarar hur de kom fram till sina slutsatser, vilket skulle vara till stor hjälp vid integrationen av ny artificiell intelligens i befintlig sjukvårdsinfrastruktur.

Dessa problem är inte unika för artificiell intelligens i hälsoapplikationer. Det bästa sättet att utveckla AI för en hel mängd avancerade applikationer är att bygga expertgemenskaper som kan arbeta på olika aspekter i nära samarbete. Jag är direktör för Finnish Center for Artificial Intelligence (FCAI), ett gemensamt initiativ av Aalto-universitetet, Helsingfors universitet och VTT. Vår slogan är att vi skapar “Verklig AI för verkliga människor i den verkliga världen” och vårt arbete med att utveckla nya AI-metoder för precisionsmedicin är ett exempel på detta. FCAI för samman ingenjörer och forskare med expertis och erfarenhet inom ett antal olika områden för att tillsammans utveckla nästa generations AI – och använda den för att lösa samhällets stora utmaningar.

  • Publicerat:
  • Uppdaterad:
Dela
URL kopierat

Relaterade nyheter

Apulaisprofessori Arno Solin
Vetenskap & konst Publicerat:

”Jag blev intresserad av maskininlärning redan innan jag kände till begreppet”

Under sommaren beviljade Finlands Akademi finansiering för den yngre forskargenerationen – bland dem Arno Solin som har ett stort intresse för maskininlärning, där man kan bekanta sig med både teori och problem ur det vardagliga livet.
Professori Milos Mladenovic
Vetenskap & konst Publicerat:

“Människor – inte teknik – är hjärtat i transportsystemet”

Designen av hållbara transportsystem medför att samhällets värdegrund måste identifieras.
Nanocellulose bicycle Photo: Eeva Suorlahti
Samarbete, Pressmeddelanden, Vetenskap & konst Publicerat:

Morgondagens hållbara livsstilar visas i Otnäs

En av Helsinki Design Weeks huvudevenemang, Designs for a Cooler Planet, uppvisar Aalto-universitetets mångfacetterade lösningar, som nanocellulosacykeln, mikrobhörlurarna och Ioncell-kläder.
Aalto University / data center / photo: Linda Koskinen
Vetenskap & konst Publicerat:

Sätt data i cirkulation! Arbetslivsprofessor Pekka Nikander hjälper att bygga informationdatasmarknaden

Till skillnad från flertalet produktionsfaktorer kan information användas på nytt otaliga gånger. En fungerande datamarknad skulle göra det möjligt att utnyttja den insamlade datan för att skapa nya innovationer.