Machine learning helps to predict blackouts caused by storms

A collaboration between computer scientists at Aalto University and the Finnish Meteorological Institute applies machine learning to predict how damaging a storm will be
Lightning strikes

Thunderstorms are common all over the world in summer. As well as spoiling afternoons in the park, lightning, rain and strong winds can damage power grids and cause electricity blackouts. It’s easy to tell when a storm is coming, but electricity companies want to be able to predict which ones have the potential to damage their infrastructure.

Machine learning – when computers find patterns in existing data which enable them to make predictions for new data – is ideal for predicting which storms might cause blackouts. Roope Tervo, a software architect at the Finnish Meteorological Institute (FMI) and PhD researcher at Aalto university in Professor Alex Jung’s research group has developed a machine learning approach to predict the severity of storms.

The first step of teaching the computer how to categorise the storms was by providing them with data from power-outages. Three Finnish energy companies, Järvi-Suomen Energia, Loiste Sähkoverkko, and Imatra Seudun Sähkönsiirto, who have power grids through storm-prone central Finland, provided data about the amount of power disruptions to their network. Storms were sorted into 4 classes. A class 0 storm didn’t knock out electricity to any power transformers. A class 1 storm cut-off up to 10% of transformers, a class 2 up to 50%, and a class 3 storm cut power to over 50% of the transformers.

Strom prediction interface, green storms are unlikely to do much damage, but red ones are

The next step was taking the data from the storms that FMI had, and making it easy for the computer to understand. “We used a new object-based approach to preparing the data, which was makes this work exciting” said Roope. “Storms are made up of many elements that can indicate how damaging they can be: surface area, wind speed, temperature and pressure, to name a few. By grouping 16 different features of each storm, we were able to train the computer to recognize when storms will be damaging”.

The results were promising: the algorithm was very good at predicting which storms would be a class 0 and cause no damage, and which storms would be at least a class 3 and cause lots of damage. The researchers are adding more data for storms into the model to help improve the ability to tell class 1 and 2 storms apart from each other, to make the prediction tools even more useful to the energy companies.

“Our next step is to try and refine the model so it works for more weather than just summer storms,” said Roope, “as we all know, there can be big storms in winter in Finland, but they work differently to summer storms so we need different methods to predict their potential damage”

Paper link:

R. Tervo, J. Karjalainen and A. Jung, "Short-Term Prediction of Electricity Outages Caused by Convective Storms," in IEEE Transactions on Geoscience and Remote Sensing.
doi: 10.1109/TGRS.2019.2921809 URL:

  • Published:
  • Updated:
URL copied!

Read more news

Picture showing the surface from top and side
Research & Art Published:

A theoretical surface study of a potential third generation solar cell material opens up prospects for more efficient solar energy conversion

A new article by the CEST group reveals atomic and electronic structure of perovskite material for future photovoltaic applications.
Jose Lado, photo: Evelin Kask
Research & Art Published:

Early career award granted to Professor Jose Lado

Professor Jose Lado was awarded early career prize. The award recognizes the talents of exceptional young researchers who are making a significant contribution to their respective field of research. The runner-up prize was awarded to Prof. Lado by Deutsche Physikalische Gesellschaft and Institute of Physics through New Journal of Physics (NJP).
Designs for a Cooler Planet 2022 – Open call
Research & Art Published:

What's Life 1.5 like? – Apply now for Designs for a Cooler Planet 2022 to showcase a sustainable future

The climate crisis and biodiversity loss call for radical new ideas. How does your work contribute to wiser consumption, climate solutions or a more sustainable working life? Designs for a Cooler Planet 2022 will present Aalto's most interesting projects to support sustainability – apply now!
Pro arte utili_kirjan kansi_kirjoittajat_kuva_Annukka Mäkijärvi
Cooperation, Research & Art, University Published:

From the margins to the top: How the School of Arts, Design and Architecture rose to the international forefront

New book Pro Arte Utili tells about leadership and vision guiding the change.