Uutiset

Koneoppiminen auttaa ennustamaan myrskyjen aiheuttamia sähkökatkoja

Aalto-yliopiston ja Ilmatieteen laitoksen yhteistyössä hyödynnetään koneoppimista myrskytuhojen ennustamisessa.
Lightning strikes

Kesäiset ukkosmyrskyt ovat yleisiä kaikkialla maailmassa. Myrskyn saapumisajan ennustaminen on helppoa, mutta sähköyhtiöiden on tärkeää myös tietää, milloin salamointi, rankat sateet ja kovat tuulet voivat vahingoittaa niiden infrastruktuuria ja aiheuttaa sähkökatkoksia.

Ilmatieteen laitoksen ohjelmistoarkkitehti Roope Tervo on kehittänyt haasteen ratkaisemiseen koneoppimista hyödyntävän lähestymistavan. Koneoppiminen tarkoittaa, että tietokoneet löytävät olemassa olevista tiedoista malleja, joiden avulla ne voivat tehdä ennusteita uuden tiedon tuottamiseksi.

”Koneoppiminen on erinomainen tapa ennustaa, mitkä myrskyt voivat aiheuttaa sähkökatkoja”, kertoo Tervo, joka työskentelee myös tutkijatohtorina Aalto-yliopiston professori Alex Jungin tutkimusryhmässä

Opetusmateriaalia myrskyherkiltä alueilta

Tutkimuksen ensimmäisessä vaiheessa tietokoneet opetettiin luokittelemaan myrskyt syöttämällä niille tiedot sähkökatkoista. Tiedot saatiin Järvi-Suomen Energialta, Loiste Sähköverkolta ja Imatran Seudun Sähkönsiirrolta, joilla on sähköverkkoja Keski-Suomen myrskyherkillä alueilla.

Myrskyt jaettiin neljään luokkaan. Luokan 0 myrsky ei katkaissut sähköjä yhdestäkään muuntajasta. Luokan 1 myrsky katkaisi sähköt enintään 10 prosentista, luokan 2 myrsky enintään 50 prosentista ja luokan 3 myrsky yli 50 prosentista muuntajista.

Strom prediction interface, green storms are unlikely to do much damage, but red ones are

Seuraava vaihe oli muokata Ilmatieteen laitoksen tiedot tietokoneen helposti ymmärrettävissä olevaan muotoon.

”Käytimme tietojen valmistelussa uutta oliopohjaista lähestymistapaa, mikä teki työstä jännittävää”, Roope Tervo kertoo.

”Myrskyt koostuvat useista elementeistä, jotka osoittavat, kuinka vahingollisia ne voivat olla. Tällaisia elementtejä ovat esimerkiksi pinta-ala, tuulen nopeus, lämpötila ja ilmanpaine. Ryhmittelemällä 16 erilaista ominaisuutta kustakin myrskystä pystyimme kouluttamaan tietokoneen tunnistamaan, milloin myrskyt ovat tuhoisia.”

Tulokset olivat lupaavia: algoritmi ennusti erittäin hyvin sen, mitkä myrskyt olisivat luokkaa 0 eivätkä aiheuttaisi vahinkoja, ja sen, mitkä myrskyt olisivat vähintään luokkaa 3 ja aiheuttaisivat paljon vahinkoja.  Jatkossa tutkijat lisäävät malliin myrskyjä koskevia tietoja helpottaakseen luokkien 1 ja 2 myrskyjen erottamista toisistaan, jolloin ennakoimistyökaluista saadaan vielä hyödyllisempiä energiayhtiöille.

”Seuraava askeleemme on kokeilla ja tarkentaa mallia niin, että se toimii muidenkin säiden kuin vain kesämyrskyjen osalta. Suomessa voi olla suuria myrskyjä talvella, mutta ne ovat erilaisia kuin kesämyrskyt, joten tarvitsemme erilaisia menetelmiä mahdollisten vahinkojen ennakoimiseksi”, Tervo kertoo.

Lisätietoja:

suunnittelija Roope Tervo, Ilmatieteen laitos
p. 029 539 3651
[email protected]

Artikkeli:

R. Tervo, J. Karjalainen and A. Jung, "Short-Term Prediction of Electricity Outages Caused by Convective Storms," in IEEE Transactions on Geoscience and Remote Sensing.
doi: 10.1109/TGRS.2019.2921809 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8751131&isnumber=4358825

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

KTT Sami Itani
Tutkimus ja taide Julkaistu:

Tohtorin urapolku: esittelyssä toimitusjohtaja Sami Itani

“Tohtoriopinnot – kuten lähes kaikki tietotyöt myös yrityselämässä - ovat tiimiperusteista projektityötä, jossa itse pääsee toimimaan oman työnsä projektipäällikkönä.”
kaksi naista istuu punaisilla tuoleilla studiossa keskustelemassa, taustalla musta verho ja keltainen lattia
Tutkimus ja taide, Opinnot Julkaistu:

Mitä voimme oppia pandemiasta?

Aalto-yliopiston studiokeskustelussa pohdittiin, millaisen tulevaisuuden rakennamme pandemiasta saatujen oppien pohjalta.
Machine Learning Coffee Seminar logo in purple and white colours
Tutkimus ja taide Julkaistu:

Machine Learning Coffee Seminar -sarja jatkuu kiinnostavilla puheilla

MLCS-sarja tuo yhteen eri tieteenalojen osaajia, joita yhdistää ainakin yksi asia: kiinnostus koneoppimiseen.
Aalto logo
Tutkimus ja taide, Yliopisto Julkaistu:

Professorit Markus Linder ja Tapani Vuorinen Suomalaisen Tiedeakatemian jäseniksi

Aalto-yliopiston kemian tekniikan korkeakoulusta biomolekulaaristen materiaalien professori Markus Linder ja puunjalostuksen kemian professori Tapani Vuorinen on valittu uusiksi jäseniksi Suomalaiseen Tiedeakatemiaan.