Uutiset

Koneoppiminen auttaa ennustamaan myrskyjen aiheuttamia sähkökatkoja

Aalto-yliopiston ja Ilmatieteen laitoksen yhteistyössä hyödynnetään koneoppimista myrskytuhojen ennustamisessa.
Lightning strikes

Kesäiset ukkosmyrskyt ovat yleisiä kaikkialla maailmassa. Myrskyn saapumisajan ennustaminen on helppoa, mutta sähköyhtiöiden on tärkeää myös tietää, milloin salamointi, rankat sateet ja kovat tuulet voivat vahingoittaa niiden infrastruktuuria ja aiheuttaa sähkökatkoksia.

Ilmatieteen laitoksen ohjelmistoarkkitehti Roope Tervo on kehittänyt haasteen ratkaisemiseen koneoppimista hyödyntävän lähestymistavan. Koneoppiminen tarkoittaa, että tietokoneet löytävät olemassa olevista tiedoista malleja, joiden avulla ne voivat tehdä ennusteita uuden tiedon tuottamiseksi.

”Koneoppiminen on erinomainen tapa ennustaa, mitkä myrskyt voivat aiheuttaa sähkökatkoja”, kertoo Tervo, joka työskentelee myös tutkijatohtorina Aalto-yliopiston professori Alex Jungin tutkimusryhmässä

Opetusmateriaalia myrskyherkiltä alueilta

Tutkimuksen ensimmäisessä vaiheessa tietokoneet opetettiin luokittelemaan myrskyt syöttämällä niille tiedot sähkökatkoista. Tiedot saatiin Järvi-Suomen Energialta, Loiste Sähköverkolta ja Imatran Seudun Sähkönsiirrolta, joilla on sähköverkkoja Keski-Suomen myrskyherkillä alueilla.

Myrskyt jaettiin neljään luokkaan. Luokan 0 myrsky ei katkaissut sähköjä yhdestäkään muuntajasta. Luokan 1 myrsky katkaisi sähköt enintään 10 prosentista, luokan 2 myrsky enintään 50 prosentista ja luokan 3 myrsky yli 50 prosentista muuntajista.

Strom prediction interface, green storms are unlikely to do much damage, but red ones are

Seuraava vaihe oli muokata Ilmatieteen laitoksen tiedot tietokoneen helposti ymmärrettävissä olevaan muotoon.

”Käytimme tietojen valmistelussa uutta oliopohjaista lähestymistapaa, mikä teki työstä jännittävää”, Roope Tervo kertoo.

”Myrskyt koostuvat useista elementeistä, jotka osoittavat, kuinka vahingollisia ne voivat olla. Tällaisia elementtejä ovat esimerkiksi pinta-ala, tuulen nopeus, lämpötila ja ilmanpaine. Ryhmittelemällä 16 erilaista ominaisuutta kustakin myrskystä pystyimme kouluttamaan tietokoneen tunnistamaan, milloin myrskyt ovat tuhoisia.”

Tulokset olivat lupaavia: algoritmi ennusti erittäin hyvin sen, mitkä myrskyt olisivat luokkaa 0 eivätkä aiheuttaisi vahinkoja, ja sen, mitkä myrskyt olisivat vähintään luokkaa 3 ja aiheuttaisivat paljon vahinkoja.  Jatkossa tutkijat lisäävät malliin myrskyjä koskevia tietoja helpottaakseen luokkien 1 ja 2 myrskyjen erottamista toisistaan, jolloin ennakoimistyökaluista saadaan vielä hyödyllisempiä energiayhtiöille.

”Seuraava askeleemme on kokeilla ja tarkentaa mallia niin, että se toimii muidenkin säiden kuin vain kesämyrskyjen osalta. Suomessa voi olla suuria myrskyjä talvella, mutta ne ovat erilaisia kuin kesämyrskyt, joten tarvitsemme erilaisia menetelmiä mahdollisten vahinkojen ennakoimiseksi”, Tervo kertoo.

Lisätietoja:

suunnittelija Roope Tervo, Ilmatieteen laitos
p. 029 539 3651
[email protected]

Artikkeli:

R. Tervo, J. Karjalainen and A. Jung, "Short-Term Prediction of Electricity Outages Caused by Convective Storms," in IEEE Transactions on Geoscience and Remote Sensing.
doi: 10.1109/TGRS.2019.2921809 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8751131&isnumber=4358825

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

maankäyttö
Tiedotteet, Tutkimus ja taide Julkaistu:

Ihmiskunnan ruokkiminen planeettaa tuhoamatta vaatii U-käännöksen

Lähes puolet nykyisestä ruoantuotannosta on haitallista planeetallemme, koska se aiheuttaa luonnon monimuotoisuuden vähenemistä, ekosysteemin rappeutumista ja vesistressiä.
Large arena filled with a crowd watching a game of DOTA2 projected on big screens
Tutkimus ja taide Julkaistu:

Elektronisen urheilun maailmanlaajuinen yleisö satoja miljoonia

Sosiaalinen kanssakäyminen on tärkein syy osallistua elektronisen urheilun tapahtumiin. E-urheilun suoria verkkolähetyksiä seuraavat fanit taas arvostavat muun muassa draamaa, uutuudenviehätystä, pelaajien taitoa ja estetiikkaa.
Julia Lohmann's Department of Seaweed at WEF. Photo: Mikko Raskinen
Tutkimus ja taide Julkaistu:

Julia Lohmann: "Tiedämme liikaa ja teemme liian vähän"

Lohmannin näyttävä merileväpaviljonki on esillä Maailman talousfoorumissa Davosissa ja se kannustaa tekemään vaikeita päätöksiä ja käynnistämään ’tekemishautomoita’.
Students in the Aalto University Learning Centre / photo by Unto Rautio
Tutkimus ja taide Julkaistu:

Tutkain 2020-2022 -hanke avaa kotimaisia lehtiaineistoja tutkimuskäyttöön

Kansalliskirjaston digitoimat kotimaiset sanoma- ja aikakauslehtiaineistot vuosilta 1930-2018 ovat nyt tutkijoiden käytettävissä.