Koneoppiminen auttaa ennustamaan myrskyjen aiheuttamia sähkökatkoja

Aalto-yliopiston ja Ilmatieteen laitoksen yhteistyössä hyödynnetään koneoppimista myrskytuhojen ennustamisessa.
Lightning strikes

Kesäiset ukkosmyrskyt ovat yleisiä kaikkialla maailmassa. Myrskyn saapumisajan ennustaminen on helppoa, mutta sähköyhtiöiden on tärkeää myös tietää, milloin salamointi, rankat sateet ja kovat tuulet voivat vahingoittaa niiden infrastruktuuria ja aiheuttaa sähkökatkoksia.

Ilmatieteen laitoksen ohjelmistoarkkitehti Roope Tervo on kehittänyt haasteen ratkaisemiseen koneoppimista hyödyntävän lähestymistavan. Koneoppiminen tarkoittaa, että tietokoneet löytävät olemassa olevista tiedoista malleja, joiden avulla ne voivat tehdä ennusteita uuden tiedon tuottamiseksi.

”Koneoppiminen on erinomainen tapa ennustaa, mitkä myrskyt voivat aiheuttaa sähkökatkoja”, kertoo Tervo, joka työskentelee myös tutkijatohtorina Aalto-yliopiston professori Alex Jungin tutkimusryhmässä

Opetusmateriaalia myrskyherkiltä alueilta

Tutkimuksen ensimmäisessä vaiheessa tietokoneet opetettiin luokittelemaan myrskyt syöttämällä niille tiedot sähkökatkoista. Tiedot saatiin Järvi-Suomen Energialta, Loiste Sähköverkolta ja Imatran Seudun Sähkönsiirrolta, joilla on sähköverkkoja Keski-Suomen myrskyherkillä alueilla.

Myrskyt jaettiin neljään luokkaan. Luokan 0 myrsky ei katkaissut sähköjä yhdestäkään muuntajasta. Luokan 1 myrsky katkaisi sähköt enintään 10 prosentista, luokan 2 myrsky enintään 50 prosentista ja luokan 3 myrsky yli 50 prosentista muuntajista.

Strom prediction interface, green storms are unlikely to do much damage, but red ones are

Seuraava vaihe oli muokata Ilmatieteen laitoksen tiedot tietokoneen helposti ymmärrettävissä olevaan muotoon.

”Käytimme tietojen valmistelussa uutta oliopohjaista lähestymistapaa, mikä teki työstä jännittävää”, Roope Tervo kertoo.

”Myrskyt koostuvat useista elementeistä, jotka osoittavat, kuinka vahingollisia ne voivat olla. Tällaisia elementtejä ovat esimerkiksi pinta-ala, tuulen nopeus, lämpötila ja ilmanpaine. Ryhmittelemällä 16 erilaista ominaisuutta kustakin myrskystä pystyimme kouluttamaan tietokoneen tunnistamaan, milloin myrskyt ovat tuhoisia.”

Tulokset olivat lupaavia: algoritmi ennusti erittäin hyvin sen, mitkä myrskyt olisivat luokkaa 0 eivätkä aiheuttaisi vahinkoja, ja sen, mitkä myrskyt olisivat vähintään luokkaa 3 ja aiheuttaisivat paljon vahinkoja.  Jatkossa tutkijat lisäävät malliin myrskyjä koskevia tietoja helpottaakseen luokkien 1 ja 2 myrskyjen erottamista toisistaan, jolloin ennakoimistyökaluista saadaan vielä hyödyllisempiä energiayhtiöille.

”Seuraava askeleemme on kokeilla ja tarkentaa mallia niin, että se toimii muidenkin säiden kuin vain kesämyrskyjen osalta. Suomessa voi olla suuria myrskyjä talvella, mutta ne ovat erilaisia kuin kesämyrskyt, joten tarvitsemme erilaisia menetelmiä mahdollisten vahinkojen ennakoimiseksi”, Tervo kertoo.

Lisätietoja:

suunnittelija Roope Tervo, Ilmatieteen laitos
p. 029 539 3651
[email protected]

Artikkeli:

R. Tervo, J. Karjalainen and A. Jung, "Short-Term Prediction of Electricity Outages Caused by Convective Storms," in IEEE Transactions on Geoscience and Remote Sensing.
doi: 10.1109/TGRS.2019.2921809 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8751131&isnumber=4358825

Lisää tästä aiheesta

Kansikuvat Verma ja Lee
Tiedotteet, Tutkimus ja taide Julkaistu:

Hyvää suunnittelua vauvasta vaariin

Aalto ARTSin elokuun väittelijät ratkaisevat ongelmia eri käyttäjäryhmät huomioonottavilla suunnittelumetodeilla.
Mika Juuti studied the use of machine learning in information security for his dissertation.
Tutkimus ja taide Julkaistu:

Tietoturvatutkijan täytyy osata ennakoida hyökkääjän seuraava askel

Tohtorikoulutettava Mika Juuti keskittyi väitöskirjassaan koneoppimisen hyödyntämiseen tietoturvajärjestelmissä.
Photoactive rod-like virus bundle schematic
Tiedotteet, Tutkimus ja taide, Yliopisto Julkaistu:

Virukset ja väriaineet voidaan valjastaa vedenpuhdistukseen

Aalto-yliopiston tutkijat kehittivät uuden tavan luoda viruspohjaisia materiaaleja. Tulevaisuudessa niitä voidaan hyödyntää muun muassa nanolääketieteessä ja ympäristöteknologiassa.
Kuva: Sanna Lehto
Yhteistyö, Tutkimus ja taide, Opinnot Julkaistu:

Miten katkaista haavoittuvaisuusketju

Claudia Garduño ja AaltoLAB Mexico selvittivät, kuinka empatian, tiiviin kuuntelemisen ja muotoiluajattelun avulla voidaan löytää alkuperäisyhteisön keskeisimmät ongelmat.
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu