Low temperature physics in a comment series published in the Nature Physics journal

The four articles in the series discuss the development of physical measurements and the significance of new discoveries in physical phenomena.
012_aalto_sci_o-v_lounasmaa_laboratory_devices_5-1-2016_photo_mikko_raskinen_en.jpg

The article "Physics at its coolest" by Juha Tuoriniemi, Senior Researcher at the Low Temperature Laboratory, was published as part of the new Measure for Measure column series in the Nature Physics journal at the beginning of this year. 

This column series range from thermodynamics to the reform of the SI system and from low temperature physics to plasma physics.

In his article on low temperature physics, Tuoriniemi records the development of research as well as contemplates why researchers are interested in ever colder temperatures. Important discoveries in low temperature physics have been quantum matter, superfluidity and superconductivity, which only occur at very low temperatures.

‘Atoms behave in a very different way at very low temperatures and the order in the system increases, reducing the thermal noise that disturbs measurements. This phenomenon enables very precise measurements’, says Juha Tuoriniemi.

Liquefying helium was an important turning point at the beginning of the 20th century. At the time, the rules of quantum mechanics were not understood, yet, but the previously unknown principles have gradually been uncovered. It took almost forty years before the quantum properties of helium were thoroughly understood, and it became possible to exploit this in cooling techniques when two types of helium, 3He and 4He, are mixed using a suitable ratio.

Atomic quantum gases, forming so-called quantum condensates, represent a new kind of order very close to absolute zero, and are one significant area of study. When quantum gases are controlled with external magnetic fields using laser cooling, extremely low temperatures can be reached. The absolute zero is at –273.15 degrees Celcius, which is exactly 0 degrees Kelvin but, as we know, it is impossible to reach that both in theory and in practise.

Researchers at Aalto University continue to perform basic research in low temperature physics. Many universities have given it up because it is now possible to buy cryostats, i.e. coolers. For example, the Finnish company BlueFors Cryogenics Ltd, which was established in 2007 on the basis of research conducted in the Low Temperature Laboratory, offers cryostats. It has gained a significant market share in cryostats across the world.

The Low Temperature Laboratory still holds the 1999 record for the coldest solid materials, which is 100 picokelvins, i.e. 0.000 000 000 1 K. The cryostat built by the researchers, used when making the record, is still in use and serves the study of quantum matter at the moment. MIT holds the record for the lowest quantum gas temperature, 50 picokelvins, reached in 2010.

Juha Tuoriniemi
[email protected]
tel:+358503442846
Aalto University Department of Applied Physics
Low Temperature Laboratory

Related news

Mika Juuti studied the use of machine learning in information security for his dissertation.
Research & Art Published:

Information security researchers need to anticipate the next step of an attacker

In his doctoral studies, Mika Juuti focused on machine learning methods in information security
Photoactive rod-like virus bundle schematic
Press releases, Research & Art, University Published:

Dyes and viruses create new composite material for photooxidation reactions

A recent study shows that native viruses can be employed as a scaffold to immobilise photoactive molecules to potentially oxidise organic pollutants present in wastewater, under visible light irradiation
Academy of Management 2019 logo
Research & Art Published:

SUB researchers to present at the Academy of Management conference in Boston

From August 9-13, several members of the SUB research group will participate in the 79th annual meeting of the Academy of Management in Boston, USA. They will join scholars from across the world to share and discuss the latest research on the conference theme Understanding the Inclusive Organization, examining how organizations impact communities on many different dimensions, from the psychological to the ecological.
Kuva: Sanna Lehto
Cooperation, Research & Art, Studies Published:

Breaking the chain of vulnerability

How empathy, close listening and design thinking enable Claudia Garduño and the AaltoLAB Mexico to find the most urgent problems in an indigenous community.
  • Published:
  • Updated:
Share
URL copied!