News

Invention by a Finnish start-up speeds up coronavirus testing

Xfold Imaging Oy, founded by researchers from Aalto University and the University of Helsinki, has developed a nanocoated glass slide that makes microscopes dozens of times more accurate. It enables the identifying of coronavirus from a sample up to one day earlier compared to current technology.
SARS-COVID19
The nanocoated glass multiplies the accuracy of the microscope by a factor of ten. Pictured is a sample containing coronavirus without coated glass (left) and with XFold nano-coated glass (right). Photo: XFold Imagining Oy

On the surface, the product developed by Xfold looks like regular glass. However, its unique nanocoating makes it a powerful signal booster that can be integrated into existing microscopes. The nanocoating makes the image produced by a microscope up to dozens of times more accurate, which also opens up new possibilities in the fight against the coronavirus epidemic.

‘At the moment, coronavirus can be detected from a sample 3–5 days after exposure. Our technology reduces this time by up to 24 hours. It can also be used to observe the effect of medicines being studied more quickly, without any new equipment or work processes’, says Timo Jäntti, CEO of Xfold Imaging.

Launched at Aalto Startup Center in 2019, Xfold has tested its technology with biomedical and virology experts at Aalto University, the University of Helsinki, Viikki Biocenter and Biomedicum in Meilahti, as well as with many international research groups in Japan and the United States.

‘We have piloted our technology for investigating viruses with the University of Stanford, for example, and we have seen its potential for diagnosing coronavirus and testing related medicines. Our technology has opened up new avenues for researchers in the world of medicine’, Jäntti says.

Xfold directly employs three people. Funded by Business Finland and Butterfly Ventures, among others, the company is now focusing entirely on potential technological solutions to help combat the coronavirus epidemic. According to Jäntti, the greatest potential lies in poorer countries.

‘Our nanocoating can be added to almost any glass slides and sensors where samples are placed. It is a simple and affordable solution that could raise the diagnostic accuracy of health care laboratories in poorer countries to the level of Western countries’, Jäntti says.

In the future, the nanocoated glass could also speed up the development of many other medicines. Traditionally, cells under examination have to be bleached in order to inspect them with a microscope and take pictures of them. However, the bleaching process shortens the lifetime of the cells, which makes it difficult to investigate the effects of chemical substances, such as medicines. With nanocoated glass, bleaching is not required so that a live cell can be observed much longer.

‘Xfold imaging is an example of how technology can help us overcome this current crisis – and solve future ones. We at Aalto Startup Center want to be at the forefront with our contribution’, says Marika Paakkala, Head of Aalto Startup Center.

Contact:
Timo Jäntti
CEO
Xfold Imagining

[email protected]
tel. +358 (0)40 171 2255

  • Published:
  • Updated:

Read more news

Nesteen polttoainejalostamon tankit Porvoossa
Cooperation, Research & Art Published:

Collaboration with Aalto brings significant financial benefits to Neste

As a result of the collaboration, Neste is now using digital tools in its fuel research alongside traditional testing.
Laboratory work at the School of Chemical Engineering
Cooperation Published:

Join the Unite! Engineering Biology matchmaking event on 11 September

The Unite! Engineering Biology initiative aims to unite researchers from all the nine partner universities in the Unite! alliance to advance key technologies and sustainable processes.
Nighttime picture of a snowy road lined with trees.
Press releases Published:

Snap, crackle, pop! — the sounds of frost actually come from the sky

Breakthrough research reveals that the popping sound associated with frost is in fact mostly coming from the atmosphere.
Comic-style illustration of Solip Park's research methods
Awards and Recognition Published:

Doctoral Researcher Solip Park's Paper Receives Honorable Mention at CHI 2024

Doctoral researcher Solip Park's paper has recently garnered attention at the prestigious CHI 2024 conference, earning an "honorable mention" distinction.