News

From Light to Motion: Shaping surfaces with light

A quantitative study that leads to a more precise control of the photoactive surface
Schematic of azopolymer/PDMS double layer. Image by Yujiao Dong, Aalto University
Schematic of azopolymer/PDMS double layer. Image: Yujiao Dong / Aalto University

Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity. 

The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications. 

This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications. 

The findings were published in ChemPhysChem, Volume 24, Issue 13 (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).

The news article was prepared by Bach Nguyen (MMD / Aalto University).

Pedro Silva

Postdoctoral Researcher
Jaakko Timonen

Jaakko Timonen

Professor (Associate Professor)
Department of Applied Physics

Related content:

Multifunctional Materials Design

Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan

ModelCom project

Autonomously adapting and communicating modular textiles

ModelCom webpage, main image, nylon yarn helix. Photo by Aalto University, Maija Vaara
  • Updated:
  • Published:
Share
URL copied!

Read more news

Research & Art Published:

Soil Laboratory Exhibition – Exploring the Dialogue Between Human and the Earth in Utsjoki

Soil Laboratory explores the relationship between humans and the earth as a living landscape through ceramic practices in Utsjoki.
Three people walking in winter next to a sign that says 'Aalto University' with snow-covered trees and buildings in the background.
Research & Art Published:

The Finnish Cultural Foundation awarded grants for science and art

A total of 15 individuals or groups from Aalto University received grants
Aerial view of a tram on a curved track surrounded by trees and buildings in a cityscape on a sunny day.
Awards and Recognition, Cooperation, Research & Art Published:

Environmental Structure of the Year 2025 Award goes to Kalasatama-Pasila tramway

The award is given in recognition of meritorious design and implementation of the built environment. Experts from Aalto University developed sustainability solutions for the project.
A blue figure holds two red, abstract creatures against a yellow background.
Aalto Magazine Published:

Five things everyone should know about creativity

Creativity is not the preserve of artists or a rare innate talent but a human capacity we all share – and one that can be measured, developed, and led for. The two-year Creative Leap project explored how creativity shows up in everyday life and work and how it connects to companies’ financial results. Here are five key takeaways.