News

From Light to Motion: Shaping surfaces with light

A quantitative study that leads to a more precise control of the photoactive surface
Schematic of azopolymer/PDMS double layer. Image by Yujiao Dong, Aalto University
Schematic of azopolymer/PDMS double layer. Image: Yujiao Dong / Aalto University

Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity. 

The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications. 

This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications. 

The findings were published in ChemPhysChem, Volume 24, Issue 13 (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).

The news article was prepared by Bach Nguyen (MMD / Aalto University).

Pedro Silva

Postdoctoral Researcher
Jaakko Timonen

Jaakko Timonen

Professori (Associate Professor)
Teknillisen fysiikan laitos

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan

ModelCom project

Autonomously adapting and communicating modular textiles

ModelCom webpage, main image, nylon yarn helix. Photo by Aalto University, Maija Vaara
  • Updated:
  • Published:
Share
URL copied!

Read more news

#65 in the world in business & economics THE World University Rankings 2026 by Subject on a yellow background.
Research & Art Published:

Business & economics and computer science ranked in top 100 globally

The Times Higher Education ranking measures universities with 18 indicators, including international research and citations
Unite! Seed Fund 2026 announcement with a small plant sprouting from soil. Call now open for student activities, teaching, and research.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Open for applications

The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.
Text: Unite! Seed Fund for Students 2026. Call now open. Image: Seedling growing from soil.
Cooperation, Research & Art, Studies, University Published:

Apply now: Unite! Seed Fund 2026 - Student Call

The Unite! Seed Fund call for 2026 is now open for students. Apply now for up to €20,000 per project, involving at least two Unite! Universities. Deadline for applications is 20 March 2026.

Text: Belonging and Well-being, Online Workshop Series. Unite! logo and abstract flower design.
Cooperation, University Published:

Join Unite's Well-Being Workshop Series

The interactive Zoom sessions are designed to support doctoral students’ well-being, strengthen a sense of belonging, and offer practical tools for success in their academic journey.