News

From Light to Motion: Shaping surfaces with light

A quantitative study that leads to a more precise control of the photoactive surface
Schematic of azopolymer/PDMS double layer. Image by Yujiao Dong, Aalto University
Schematic of azopolymer/PDMS double layer. Image: Yujiao Dong / Aalto University

Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity. 

The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications. 

This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications. 

The findings were published in ChemPhysChem, Volume 24, Issue 13 (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).

The news article was prepared by Bach Nguyen (MMD / Aalto University).

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan

ModelCom project

Autonomously adapting and communicating modular textiles

ModelCom webpage, main image, nylon yarn helix. Photo by Aalto University, Maija Vaara
  • Published:
  • Updated:

Read more news

A new eco-friendly method to modify cellulose for sustainable materials
Press releases, Research & Art Published:

A new eco-friendly method to modify cellulose for sustainable materials

Researchers at Aalto University have developed a method to modify cellulose, reducing toxic solvent use by over ten times compared to traditional methods. This innovation has potential applications in eco-friendly nanocomposites, cellulose-based membranes, and biomedical devices, supporting sustainable material development.
Modern beige building with multiple windows, balconies, and surrounded by tall trees.
Cooperation, Research & Art, Studies Published:

Vacant properties in Kouvola to be repurposed through circulation economy construction

Aalto University students are seeking solutions to Kouvola city’s property challenges
image
Research & Art Published:

Boendets pris - ett finskt perspektiv

Gästföreläsning för jagvillhabostad.nu i samarbete med institutionen för urbana studier, Malmö universitet
Läppäri. Kuva: Kalle Kataila
Research & Art Published:

The doctoral thesis encourages the integration of analytics into the company’s strategy

The management of analytics and the development of employees' analytics skills are needed to maximize the benefits derived from analytics