News

Finland's first multicopter flight using 4G remote control conducted at Aalto University

In the future, 4G guidance can ease rescue work in difficult conditions.
4G_remote_controlled_multicopter_flight_photo_Lassi_Sundqvist

The flight involved a six-rotor miniature copter using the Nokia LTE/4G test network in Otaniemi in Espoo. The successful development project and test flight show that LTE/4G technology can be extended in research work to guidance of a helicopter.

Guidance through the mobile network allows for a wide working radius as well as guidance from inside a building without visual contact, using only instruments and a video camera.

'The research indicates that 4G is fast enough for many purposes. 4G makes mobile technology available to hobbyists and opens numerous application possibilities for professional use. However, acrobatic flight by remote control would probably require 5G speed', says Research Assistant Lassi Sundqvist of the Department of Communications and Networking.

Traditionally, different kinds of model aircraft use 2.4 gigahertz radio guidance with the help of direct visual contact. Manoeuvrability is limited by a working radius of about one kilometre, which does not reach behind buildings, for instance.

Remote control through the mobile network makes it easier to follow a flight and to pinpoint the location of the helicopter in a possible problem situation.

'4G makes work easier and saves resources in rescue work, for instance, or in pinpointing problems with electricity lines, for instance.'

Opportunities and hazards

For now, legislation restricts the expansion of use into public networks.

'In addition to opportunities, there are also hazards in the use of the 4G network for remote control of the copters. It is therefore important to clarify and develop legislation', says Professor Heikki Hämmäinen of the Department of Communications and Networking.

Further research is also needed for the development of the quality characteristics of the mobile network. Matters to be studied include aspects such as the quality of the network service (QoS) and fluctuations that occur when the base station changes, for instance.

The study is part of research for the master's thesis of Lassi Sundqvist on mobile networks at the Department of Communications and Networking.

Video (YouTube)

 

Further information:

Professor Heikki Hämmäinen
[email protected]
Tel. +358 50 384 1696

Bachelor of Science (Technology) Lassi Sundqvist
[email protected]
Tel. +358 400 621 707

 

  • Published:
  • Updated:
Share
URL copied!

Related news

Person sitting on a pink couch in front of a big window holding a laptop
Cooperation, Research & Art Published:

Digital services have a greater carbon footprint than aviation does – research project aims at reducing ICT environmental impact

A new research project by Aalto University and LUT University examines the utilisation of surplus heat from data centres and the design of more efficient digital services, for example.
Luonnoskuva valokuiduista. Kuva: Ville Hynninen and Nonappa.
Research & Art Published:

Sustainable optical fibres developed from methylcellulose


Researchers from Tampere University and Aalto University have developed optical fibres from methylcellulose, a commonly used cellulose derivative. The finding opens new avenues to short-distance optical fibres using sustainable and environmentally benign fibre processing. The finding was published in the journal Small
Installation Talks, Matti Kummu
Research & Art Published:

Professor Matti Kummu: How to provide enough sustainable food for all?

'Countries have different opportunities to reach sustainability in food supply, but a global U-turn is needed', he emphasises.
Photo of crop by Tim Mossholder from Pexels
Press releases, Research & Art Published:

Food export restrictions by a few countries could skyrocket global food crop prices

Global shocks such as COVID-19 call for improved political decisions and accountability to secure food for everyone