News

Experiment with turnstiles of single electrons shows way towards new power standard

Researchers at Aalto University propose method of transducing frequency to power
Device
Measured power at different device working points (top). Its values are even integer multiples of Δf, hence the plateau structure of this figure. The device (bottom) is constituted by a small metallic island, source and drain leads and a gate electrode.

The world’s most commonly used system of measurement, the International System of Units (SI), was redefined in 2019. Since then, units have needed to be defined in terms of the constants of Nature – that is, Nature’s rules that are fixed and of no uncertainty, such as the speed of light – and not in terms of arbitrary references.

This has meant that new research for relating the many units of the system to the constants through experimental realizations has been called for.

‘The redefinition has caused a need for new realizations,' says Professor Jukka Pekola.

Researchers at Aalto University have now found a promising new way to link the watt (the unit of power) to the constants of Nature. They believe their method could show the way towards a new power standard, that is, a new way to produce an a-priori known amount of power against which other power sources and detectors can be compared.

The researchers have developed a device that converts frequency to power. Frequency is a quantity that can be set with low uncertainty, and therefore it provides a solid basis for a new standard.

‘Frequency can be defined very, very precisely. If you can make the other quantities depend on frequency in a known way, then you have a very accurate standard’, Pekola says.

Furthermore, the researchers have discovered that such dependence obeys a simple law with accuracy and robustness.

‘These characteristics increase the chances of using this method as a standard’, says Marco Marín Suárez, a doctoral candidate.

‘Basically, this is a potential new way of realizing a watt, or energy flux, just by setting previously known quantities’, describes Marín Suárez.

In the experiment, power is produced with a single-electron transistor in its turnstile operation. This device was previously proved by Pekola to work as a potential standard for the ampere, the unit of electrical current. It is constituted by a small metallic island, source and drain leads and a gate electrode, and it can address very small powers.

The way from a proposal to an actual accepted new standard is long. Aalto researchers hope that their work will next attract the attention of metrologists who would take it further with more precise measurements.

‘This first experiment was not on the level of metrology yet. We could demonstrate that this principle works, though, and we have also shown where the main errors come from. It remains to be seen if this comes to be adopted by the metrology community’, Pekola sums up.

The researchers seek now to push their proposal forward by characterizing how well the frequency to power conversion law adjusts to their method. This will increase the accuracy at which small powers can be calibrated.

The experiments were conducted at the OtaNano national research infrastructure. Professor Pekola's group is part of the QTF Centre of Excellence and InstituteQ, the Finnish quantum institute.

Link to the original article (Nature Nanotechnology website)

InstituteQ – The Finnish Quantum Institute

InstituteQ coordinates quantum technology research, education and innovation across Finland

Read more
InstituteQ. Photo: Jorden Senior.
  • Published:
  • Updated:

Read more news

Main entrance to the Viima building
Research & Art Published:

Future buildings are both producers and users of energy

An innovative new structure developed at Aalto University improves the efficiency of plate heat exchangers by up to 20%. When connected to a heat pump, it has a wide range of applications, from domestic hot water heating to geothermal installations and ventilation in buildings.
Construction worker looking straight to camera
Press releases, Research & Art Published:

Up to 80% of work on construction sites is inefficient, and also safety is affected by constant interruptions

Most of the work carried out on construction sites does not directly affect the actual progress of the work. However, a recent doctoral dissertation found an easy way to improve construction productivity and, at the same time, well-being: monitoring employees' activities.
Concrete staircase leading upstairs, a painting hanging on the wall on the left
Campus, Research & Art, University Published:

Shared imagination and the idea of waves - two new public art collections were unveiled

The art collections of Marsio and Kide buildings were published.
Tapani Vuorinen in a black suit, facing camera in front of large windows.
Awards and Recognition, Cooperation, Research & Art Published:

Aalto Distinguished Professor Tapani Vuorinen: “Only through collaboration can we achieve greater impact”

Tapani Vuorinen, professor of forest products chemistry at the School of Chemical Engineering, was appointed Aalto Distinguished Professor at the opening of the academic year on 3 September.